Electrochemical Non-Enzymatic Glucose Sensing Platform Based on Vanadium Pentoxide Film-Modified Screen Printed Gold Electrode
DOI:
https://doi.org/10.24925/turjaf.v12i4.692-698.6620Anahtar Kelimeler:
V2O5- glucose, biosensor- electrodeposition- screen printed gold electrodeÖzet
A screen printed gold electrode (SPGE) served as the foundation for directly depositing Vanadium pentoxide (V2O5), crafting an enzyme-free glucose sensor. Through cyclic voltammetry in an alkaline setting, the sensor's ability to drive glucose oxidation was explored. Utilizing V2O5 as an electrocatalyst, this non-enzymatic sensor exhibited an expansive linear detection range (1 mM–10 mM) and an impressively low detection limit of 0.9 μM. These results underscored V2O5's robust electrocatalytic process in facilitating glucose oxidation within alkaline solutions, unaffected notably by substances like ascorbic acid, fructose and maltose. This investigation highlights a direct and efficient method for glucose detection without reliance on enzymes.
Referanslar
M. M. Rahman, M. M. Hussain, A. M. Asiri 2019. D-Glucose sensor based on ZnO.V2O5 NRs by an enzyme-free electrochemical approach. RSC Advances 9, 31670 DOI: https://doi.org/10.1039/C9RA06491E
K. A. Razak, S. H. Neoh, N. S. Ridhuan N. M. Nor 2016. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode. Applied Surface Science 380, 32–39 DOI: https://doi.org/10.1016/j.apsusc.2016.02.091
Q. Dong, H. Ryu, Y. Lei 2021. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochimica Acta 370, 137744 DOI: https://doi.org/10.1016/j.electacta.2021.137744
K. Dhara, D. R. Mahapatra 2018. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchimica Acta 185, 49 DOI: https://doi.org/10.1007/s00604-017-2609-1
M. Filip, M. Vlassa, V. Coman, A. Halmagyi 2016. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chemistry 199, 653–659 DOI: https://doi.org/10.1016/j.foodchem.2015.12.060
J. Chitra, M. Ghosh, H.N. Mishra 2017. Rapid quantification of cholesterol in dairy powders using Fourier transform near infrared spectroscopy and chemometrics. Food Control 78, 342–349 DOI: https://doi.org/10.1016/j.foodcont.2016.10.008
X. Wu, Y. Chai, R. Yuan, X. Zhong, J. Zhang 2014. Synthesis of multiwall carbon nanotubes-graphene oxide-thionine-Au nanocomposites for electrochemiluminescence detection of cholesterol. Electrochimica Acta 129, 441–449 DOI: https://doi.org/10.1016/j.electacta.2014.02.103
G. Maduraiveeran, M. Sasidharan, V. Ganesan 2018. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors& Bioelectronics 103, 113–129 DOI: https://doi.org/10.1016/j.bios.2017.12.031
S. Phetsang, J. Jakmunee, P. Mungkornasawakul, R. Laocharoensuk, K. Ounnunkad 2019. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 127, 125–135 DOI: https://doi.org/10.1016/j.bioelechem.2019.01.008
M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li, Y. Luo, S. Lu, X. Shi, W. Lu, X. Sun 2020. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications 56, 14553-14569 DOI: https://doi.org/10.1039/D0CC05650B
S.N. Faisal, C.M. Pereira, S. Rho, H.J. Lee 2010. Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface. Physical Chemistry Chemical Physics 12, 15184–15189 DOI: https://doi.org/10.1039/C0CP00750A
K. E. Toghill, R. G. Compton 2010. Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. International Journal of Electrochemical Science 5, 1246–1301
D. Rathod, C. Dickinson, D. Egan, E. Dempsey 2010. Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing. Sensors and Actuators B Chemical 143(2), 547–554 DOI: https://doi.org/10.1016/j.snb.2009.09.064
H. Bai, M. Han, Y. Du, J. Bao, Z. Dai 2010. Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor. Chemical Communications 46(10), 1739– 1741. DOI: https://doi.org/10.1039/B921004K
Y. Zhang, Y. Wang, J. Jia, J. Wang 2012. Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sensors and Actuators B Chemical 171-172, 580–587. DOI: https://doi.org/10.1016/j.snb.2012.05.037
H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen 2016. Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B 4, 7333-7349 DOI: https://doi.org/10.1039/C6TB02037B
F. Franceschini, I. Taurino 2022. Nickel-based catalysts for non-enzymatic electrochemical sensing of glucose: A review. Physics in Medicine 14, 100054 DOI: https://doi.org/10.1016/j.phmed.2022.100054
A. Ashok, A. Kumar, F. Tarlochan 2019. Highly efficient nonenzymatic glucose sensors based on Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection CuO nanoparticles. Applied Surface Science 481, 712-722 DOI: https://doi.org/10.1016/j.apsusc.2019.03.157
H. Wei, Q. Xue, A. Li, T. Wan, Y. Huang, D. Cui, D. Pan, B. Dong, R. Wei, N. Naik, Z. Guo 2021. Dendritic core-shell copper-nickel alloy@metal oxide for efficient non-enzymatic glucose detection. Sensors and Actuators B Chemical 337, 129687. DOI: https://doi.org/10.1016/j.snb.2021.129687
N. Sattarahmady, H. Heli 2012. A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. Journal of Experimental Nanoscience, 7, 5, 529–546 DOI: http://dx.doi.org/10.1080/17458080.2010.539275
P. Si, X.-C. Dong, P. Chen, D.-H. Kim 2013. A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. Journal of Materials Chemistry B 1, 110-115 DOI: DOI: 10.1039/C2TB00073C
W. Raza, K. Ahmad 2018. A highly selective Fe@ZnO modified disposable screen printed electrode based non-enzymatic glucose sensor (SPE/Fe@ZnO). Materials Letters 212, 231-234 DOI: https://doi.org/10.1016/j.matlet.2017.10.100
I. E. Wachs 2013. Catalysis science of supported vanadium oxide catalysts. Dalton Transactions 42, 11762-11769 DOI: https://doi.org/10.1039/C3DT50692D
O. Monfort, P. Petrisková 2021. Binary and Ternary Vanadium Oxides: General Overview, Physical Properties, and Photochemical Processes for Environmental Applications. Processes 9, 214 DOI: https://doi.org/10.3390/pr9020214
Ge Li, D. Xie, H. Zhong, Z. Zhang, X. Fu, Q. Zhou, Q. Li, H. Ni, J. Wang, Er-J Guo, M. He, C. Wang, G. Yang, K. Jin, C. Ge 2022. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nature Communications 13, 1729. DOI: https://doi.org/10.1038/s41467-022-29456-5
R. Berenguer, M. O. Guerrero-Pérez, I. Guzmán, J. Rodríguez-Mirasol, T. Cordero 2017. Synthesis of Vanadium Oxide Nanofibers with Variable Crystallinity and V5+/V4+ Ratios. ACS Omega 2, 7739-7745 DOI: https://doi.org/10.1021/acsomega.7b01061
A. Kämper, I. Hahndorf, M. Baerns 2000. A molecular mechanics study of the adsorption of ethane and propane on V2O5(001) surfaces with oxygen vacancies. Topics in Catalysis 11, 77-84 DOI: https://doi.org/10.1023/A:1027239612464
Z. Chu, J. Peng, W. Jin 2017. Advanced nanomaterial inks for screen-printed chemical sensors. Sensors and Actuators B Chemical 243,919– 926 DOI: https://doi.org/10.1016/j.snb.2016.12.022
E. Uchaker, Y.Z. Zheng, S. Li, S.L. Candelaria, S. Hu, G.Z. Cao 2014. Better than Crystalline: Amorphous Vanadium Oxide for Sodium Ion Batteries. Journal of Materials Chemistry 2, 18208–18214 DOI: DOI: https://doi.org/10.1039/C4TA03788J
M. Berouaken, C. Yaddaden, H. Ferdjouni, C. Torki, M. Maoudj, K. Chebout, M. Ayat, H. Menari, A. Manseri, N. Gabouze 2022. Investigation of hybrid nanostructure based on nanorods vanadium pentoxide/mesoporous silicon as electrode materials for electrochemical supercapacitor. Applied Physics A 128, 653. https://doi.org/10.1007/s00339-022-05804-6
A. L. Rinaldi, R. Carballo 2016. Impedimetric non-enzymatic glucose sensor based on nickel hydroxide thin film onto gold electrode. Sensors and Actuators B Chemical 228, 43–52. DOI: https://doi.org/10.1016/j.snb.2015.12.101
I. Fernandez, J. L. Gonzalez-Mora, P. Lorenzo-Luis, R. Villalonga, P. A. Salazar-Carballo 2020. Nickel oxide nanoparticles-modified glassy carbon electrodes for non-enzymatic determination of total sugars in commercial beverages. Microchemical Journal 159, 105538 DOI: https://doi.org/10.1016/j.microc.2020.105538
B. Pérez-Fernández, D. Martín-Yerga, A. Costa-García 2016. Electrodeposition of nickel nanoflowers on screen-printed electrodes and their application to non-enzymatic determination of sugars. RSC Advances, 6, 83748-83757 DOI: 10.1039/C6RA15578B
K. Grochowska, J. Ryl, J. Karczewski, G. Śliwiński, A. Cenian, K. Siuzdak 2019. Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2–Au composite. Journal of Electroanalytical Chemistry 837, 230-239 DOI: https://doi.org/10.1016/j.jelechem.2019.02.040
P. F. Luo, T. Kuwana, D. K. Paul, P. M. Sherwood 1996. Electrochemical and XPS Study of the Nickel-Titanium Electrode Surface. Analytical Chemistry 68, 3330–7. DOI: https://doi.org/10.1021/ac960236e
R. Hallaj, N. Mohammadian, S. Ghaderi, A. Navae 2020. Nonenzymatic and low potential glucose sensor based on electrodeposited Ru-nanofilm from ionic liquid electrolyte. Materials Science and Engineering: B 261, 114666 DOI: https://doi.org/10.1016/j.mseb.2020.114666
Z. Z. Cui, H.Y. Yin, Q. L. Nie, D.Y. Qin, W.W. Wu, X.L. He 2015. Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors. Journal of Electroanalytical Chemistry 757, 51-57 DOI: https://doi.org/10.1016/j.jelechem.2015.09.011
K. M. El Khatib, R. M. A. Hameed 2011. Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosensors&Bioelectronics, 26, 3542-3548 DOI: https://doi.org/10.1016/j.bios.2011.01.042
Y. Ding, Y. Wang, L. A Su, M. Bellagamba, H. Zhang, Y. Lei 2010. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron., 26, 542-548. DOI: https://doi.org/10.1016/j.bios.2010.07.050
Y. X. Chen, H. H. Zhang, H.G. Xue, X. Y. Hu, G. X. Wang, C. Y. Wang 2014. Construction of a non-enzymatic glucose sensor based on copolymer P4VP-co-PAN and Fe2O3 nanoparticles. Materials Science&Engineeering C 35, 420-425 DOI: https://doi.org/10.1016/j.msec.2013.11.030
P. Si, X. C. Dong, P. Chen, D.H. Kim 2013. A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. Journal of Materials Chemistry B 1, 110-115 DOI: 10.1039/C2TB00073C
F. Franceschini, M. R. Payo, K. Schouteden, J. Ustarroz, J. P. Locquet, I. Taurino 2023. MBE Grown Vanadium Oxide Thin Films for Enhanced Non-Enzymatic Glucose Sensing. Advanced Functional Materials, 2304037. DOI: https://doi.org/10.1002/adfm.202304037
L. Prabakaran, P. Shankar, S. A. Kulinich, J. B. Balaguru Rayappan 2024. Eco-friendly fabrication of V2O5@GO hybrids for direct glucose electrooxidation and sensing: An alternative to noble metals. Journal of Industrial and Engineering Chemistry 132, 383–394. DOI: https://doi.org/10.1016/j.jiec.2023.11.032
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Bu çalışma Creative Commons Attribution-NonCommercial 4.0 International License ile lisanslanmıştır.