The Synthesis, Functions and Mechanisms of Action of the Silver Nanoparticles and Their Uses in the Processing and Preservation of Meat and Meat Products

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i9.1768-1783.6099

Keywords:

Silver nanoparticles, Food packaging, Food preservation, Antimicrobial activity, Toxicity

Abstract

Nanoparticles are organic and inorganic structures ranging in size from 1-100 nm. They are a part of our daily life and attract great attention in various fields such as agriculture, environment, and medicine. Silver nanoparticles (AgNPs) are among the metal nanoparticles that have been the most widely researched and used for their optical, electrical, and antimicrobial properties. Today, in advanced food technology applications, nanoparticles and additives containing nanoparticles are used to improve the nutritional content of foods and to increase the stability of food components or final food products by extending their shelf life. Thanks to their unique properties, AgNPs are regarded as leaders in the fight against pathogenic microbial activity, solving current problems in the food industry. AgNPs have a strong effect on slowing the antimicrobial activities of antibiotic-resistant bacteria as well as being active against a broad spectrum of pathogenic bacteria. In this review, the physical, chemical, and biological methods used in the production of silver nanoparticles, the functions and mechanisms of action of the particles, and the use of AgNPs as a preservative in meat and meat products and their new generation packaging systems are explained in detail.  

References

Abbasi M, Ahari H, Tabari M. 2020. Comparative study of polyethylene and polyamide packaging containing silver nanoparticles in reduction of meat products (mince meat) microbial load. Journal of Food Biosciences and Technology, 10(1): 87-102.

Abdulazeem L, Alasadi YF, Al-Mawlah YH, Hadi AM. 2021. A Mini-review: Silver Nanoparticles (AgNPs) as Antimicrobial in Magical Socks. Journal of Pharmaceutical Research International, 33(51A): 23-32. doi: 10.9734/JPRI/2021/v33i51A33463

Abo-Gabal BE, Bahnasawy AH, Khater EG. 2022. Effect of edible films reinforced with nanoparticles on shelf-life and quality of chicken fillets meat during storage. Misr Journal of Agricultural Engineering, 39(2): 205-220. doi: 10.21608/mjae.2022.111826.1060

Abreu AS, Oliveira M, de Sa A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV. 2015. Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers, 129: 127-134. doi: 10.1016/j.carbpol.2015.04.021

Ahari H, Lahijani LK. 2021. Migration of silver and copper nanoparticles from food coating. Coatings, 11: 380. doi: 10.3390/coatings11040380

Ahmad SS, Yousuf O, Islam RU, Younis K. 2021. Silver nanoparticles as an active packaging ingredient and its toxicity. Packaging Technology and Science, 34: 653-663. doi: 10.1002/pts.2603

Ahmed J, Mulla M, Arfat YA, Bher A, Jacob H, Auras R. 2018. Compression molded LLDPE films loaded with bimetallic (Ag-Cu) nanoparticles and cinnamon essential oil for chicken meat packaging applications. LWT-Food Science and Technology, 93: 329-338. Doi: 10.1016/j.lwt.2018.03.051

Ahmed T, Ogulata RT. 2021. A review on silver nanoparticles -green synthesis, antimicrobial action and application in textiles. Journal of Natural Fibers, 19(14): 8463-8484. doi: 10.1080/15440478.2021.1964135

Akhila V, Badwaik LS. 2022. Recent advancement in improvement of properties of polysaccharides and proteins based packaging film with added nanoparticles: A review. International Journal of Biological Macromolecules, 203: 515-525. doi: 10.1016/j.ijbiomac.2022.01.181

Akintelu SA, Bo Y, Folorunso AS. 2020. A review on synthesis, optimization, mechanism, characterization, and antibacterial application of silver nanoparticles synthesized from plants. Journal of Chemistry, 2020: 3189043. doi: 10.1155/2020/3189043

Almatroudi A. 2020. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sciences, 15(1): 819-839. doi: 10.1515/biol-2020-0094

An L, Nguyen H. 2022. Market research and fabrication of low-cost disinfectant spray for pets using silver nanoparticles. VNUHCM Journal of Science and Technology Development, 25(1): 2239-2251. doi: 10.32508/stdj.v25i1.3509

Angelina JTT, Narayani R, Ganesan S, Panicker TMR, Jagadeesan K. 2019. In vitro haemocompatibility and cytocompatibility evaluation of silver thin film-deposited heart valve prosthesis material. Materials Technology, 34(8): 471-479. doi: 10.1080/10667857.2019.1578465

Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K. 2022. Application of nanotechnology in food packaging: Pros and cons. Journal of Agriculture and Food Research, 7: 100270. doi: 10.1016/j.jafr.2022.100270

Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP. 2015. Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4: 26-35. doi: 10.1016/j.fpsl.2015.03.003

Azlin-Hasim S, Cruz-Romero MC, Morris MA, Padmanabhan SC, Cummins E, Kerry JP. 2016. The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food and Bioprocess Technology, 9: 1661-1673. doi: 10.1007/s11947-016-1745-7

Badawy ME, Lotfy TM, Shawir S. 2019. Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bulletin of the National Research Centre, 4: 83. doi: 10.1186/s42269-019-0124-8

Bandekar SS, Kerur SS, Kore SK, Hegde PG. 2020. Synthesis and antimicrobial activity of plant based silver nanoparticles-A review. Bioscience Biotechnology Research Communications, 13(13): 122-130. doi: 10.21786/bbrc/13.13/17

Bapat MS, Singh H, Shukla SK, Singh PP, Vo DN, Yadav A, Goyal A, Sharma A, Kumar D. 2022. Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. Chemosphere, 286(Pt 2): 131761. doi: 10.1016/j.chemosphere.2021.131761

Barani H, Mahltig B. 2022. Microwave-assisted synthesis of silver nanoparticles: Effect of reaction temperature and precursor concentration on fluorescent property. Journal of Cluster Science, 33(1): 101-111. doi: 10.1007/s10876-020-01945-x

Bergal A, Matar GH, Andaç M. 2022. Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity. BioNanoScience. 12: 307-321. doi: 10.1007/s12668-022-00958-2

Biswas M C, Tiimob BJ, Abdela W, Jeelani S, Rangari VK. 2019. Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application. Food Packaging and Shelf Life, 19: 104-113. doi: 10.1016/j.fpsl.2018.12.003

Carbone M, Donia DT, Sabbatella G, Antiochia R. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science, 28(4): 273-279. doi: 10.1016/j.jksus.2016.05.004

Casagrande MG, de Lima R. 2019. Synthesis of silver nanoparticles mediated by fungi: A review. Frontiers in Bioengineering and Biotechnology, 7: 287. doi: 10.3389/fbioe.2019.00287

Chakravarty A, Ahmad I, Singh P, Ud Din Sheikh M, Aalam G, Sagadevan S, Ikram S. (2022). Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity. Chemical Physics Letters, 795: 139493. doi: 10.1016/j.cplett.2022.139493

Chaudhary R, Nawa, K, Khan AK, Hano C, Abbasi BH, Anjum S. 2020. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules, 10(11): 1498. doi: 10.3390/biom10111498

Crisan CM, Mocan T, Manolea M, Lasca LI, Tabaran FA, Mocan L. 2021. Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences-Basel, 11(3): 1120. doi: 10.3390/app11031120

Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2013. Migration and exposure assessment of silver from a PVC nanocomposite. Food Chemistry, 139: 389-397. doi: 10.1016/j.foodchem.2013.01.045

Daniel SK, Sureshkumar V, Sivakumar M. 2016. Nano ice based on silver nanoparticles for fish preservation. International Journal of Fisheries and Aquatic Studies, 4(5): 162-167.

Dash KK, Deka P, Bangar SP, Chaudhary V, Trif M, Rusu A. 2022. Applications of ınorganic nanoparticles in food packaging: A comprehensive review. Polymers, 14(3): 521. doi: 10.3390/polym14030521

De Silva C, Nawawi NM, Abd Karim MM, Abd Gani S, Masarudin MJ, Gunasekaran B, Ahmad SA. 2021. The mechanistic action of biosynthesised silver nanoparticles and its application in aquaculture and livestock industries. Animals, 11: 2097. doi: 10.3390/ani11072097

Deus D, Kehrenberg C, Schaudien D, Klein G, Krischek C. 2017. Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Poultry Science, 96(2): 449-457. doi: 10.3382/ps/pew308

Dutta T, Chowdhury SK, Ghosh NN, Chattopadhyay AP, Das M, Mandal V. 2022. Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations. Journal of Molecular Structure, 1247: 131361. doi: 10.1016/j.molstruc.2021.131361

Echegoyen Y, Nerín C. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology, 62: 16-22. doi: 10.1016/j.fct.2013.08.014

Ediyilyam S, George B, Shankar SS, Dennis TT, Waclawek S, Cernik M, Padil VVT. 2021. Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications. Polymers (Basel), 13(11): 1680. doi: 10.3390/polym13111680

El-Refai AA, Hassan AM, Nagy K, Rabie MM. 2017. Antimicrobial effect for both of carboxy methyl cellulose and chitosan treated with ferulic acid or nanosilver particles as edible coatings used for some refrigerated beef samples. Journal of Food and Dairy Sciences, 8(2): 87-91. doi: 10.21608/jfds.2017.37128

Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. 2009. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry, 57(14): 6246-6252. doi: 10.1021/jf900337h

Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araujo DB, Azevedo V, Portela RD, Tasic L. 2021. Applications of silver nanoparticles in dentistry: Advances and technological innovation. International Journal of Molecular Sciences, 22(5): 2485. doi: 10.3390/ijms22052485

Gallocchio F, Cibin V, Biancotto G, Roccato A, Muzzolon O, Carmen L, Simone B, Manodori L, Fabrizi A, Patuzzi I, Ricci A. 2016. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Additives & Contaminants: Part A, 33(6): 1063-1071. doi: 10.1080/19440049.2016.1179794

Garcia T, Lafuente D, Blanco J, Sánchez DJ, Sirvent JJ, Domingo JL, Gómez M. 2016. Oral subchronic exposure to silver nanoparticles in rats. Food and Chemical Toxicology, 92, 177-187. doi: 10.1016/j.fct.2016.04.010

Garg D, Sarkar A, Chand P, Bansal P, Gola D, Sharma S, Khantwal S, Surabhi Mehrotra R, Chauhan N, Bharti RK. 2020. Synthesis of silver nanoparticles utilizing various biological systems: Mechanisms and applications-a review. Progress in Biomaterials, 9(3): 81-95. doi: 10.1007/s40204-020-00135-2

Gaviria J, Alcudia A, Begines B, Beltrán AM, Villarraga J, Moriche R, Rodríguez-Ortiz JA, Torres Y. 2021. Synthesis and deposition of silver nanoparticles on porous titanium substrates for biomedical applications. Surface and Coatings Technology, 406: 126667. doi: 10.1016/j.surfcoat.2020.126667

Ghetas HA, Abdel-Razek N, Shakweer MS, Abotaleb MM, Ahamad Paray B, Ali S, Eldessouki EA, Dawood MAO, Khalil RH. 2022. Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens. Saudi Journal of Biological Sciences, 29(3): 1298-1305. doi: 10.1016/j.sjbs.2021.11.015

Gudikandula K, Maringanti SC. 2016. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience, 11(9): 714-721. doi:10.1080/17458080.2016.1139196

Hong SI, Cho Y, Rhim JW. 2021. Effect of agar/AgNP composite film packaging on refrigerated beef loin quality. Membranes, 11(10): 750. doi: 10.3390/membranes11100750

Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, Shao L, Xue W, Zhang H, Zhu P, Guo R. 2022. Nanocomposite hydrogels for biomedical applications. Bioengineering & Translational Medicine, 7(3): e10315. doi: 10.1016/j.jcis.2021.10.131

Ijaz M, Zafar M, Iqbal T. 2021. Green synthesis of silver nanoparticles by using various extracts: A review. Inorganic and Nano-Metal Chemistry, 51(5): 744-755. doi: 10.1080/24701556.2020.1808680

Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Saeed R, Hussain S, Hussain T, Bukhari A, Naseer Y, Aftab R. 2022. Green synthesis of silver nanoparticles using different plants parts and biological organisms, characterization and antibacterial activity. Environmental Nanotechnology, Monitoring & Management, 18: 100704. doi: 10.1016/j.enmm.2022.100704

Islam MA, Jacob MV, Antunes E. 2021. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 281: 111918. doi: 10.1016/j.jenvman.2020.111918

Jain N, Jain P, Rajput D, Patil U. 2021. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 9(1): 5. doi: 10.1186/s40486-021-00131-6

Kanimozhi S, Durga R, Sabithasree M, Kumar AV, Sofiavizhimalar A, Kadam AA, Rajagopal R, Sathya R, Azelee NIW. 2022. Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its invitro study. Journal of King Saud University-Science, 34(4): 101930. doi: 10.1016/j.jksus.2022.101930

Kavakebi E, Anvar AA, Ahari H, Motalebi AA. 2021. Green biosynthesized Satureja rechingeri Jamzad-Ag/poly vinyl alcohol film: quality improvement of Oncorhynchus mykiss fillet during refrigerated storage. Food Science and Technology, Campinas, 41(1): 267-278. doi: 10.1590/fst.62720

Khalaf HH, Sharoba AM, El-Tanahi HH, Morsy MK. 2013. Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey deli meat quality. Journal of Food and Dairy Sciences, 4(11): 557-573. doi: 10.21608/jfds.2013.72104

Khan MJ, Ramiah SK, Selamat J, Shameli K, Sazili AQ, Mookiah S. 2022. Utilisation of pullulan active packaging incorporated with curcumin and pullulan mediated silver nanoparticles to maintain the quality and shelf life of broiler meat. Italian Journal of Animal Science, 21(1): 244-262. doi: 10.1080/1828051X.2021.2012285

Krishnaraj C, Radhakrishnan S, Ramachandran R, Ramesh T, Kim BS, Yun SI. 2022. In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites. Chemosphere, 301: 134790. doi: 10.1016/j.chemosphere.2022.134790

Kumar P, Mahajan P, Kaur R, Gautam S. 2020. Nanotechnology and its challenges in the food sector: A review. Materials Today Chemistry, 17: 100332. doi: 10.1016/j.mtchem.2020.100332

Kumar S. Basumatary IB, Sudhani HPK, Bajpai VK, Chen L, Shukla S, Mukherjee A. 2021. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trend in Food Science and Technology, 112: 651-666. doi: 10.1016/j.tifs.2021.04.03

Kuuliala L, Pippuri T, Hultman J, Auvinen S-M, Kolppo K, Nieminen T, Karp M, Björkroth J, Kuusipalo J, Jääskeläinen E. 2015. Preparation and antimicrobial characterization of silver-containing packaging materials for meat. Food Packaging and Shelf Life, 6: 53-60. doi: 10.1016/j.fpsl.2015.09.004

Lakhan MN, Chen R, Shar AH, Chand K, Shah AH, Ahmed M, Ali I, Ahmed R, Liu J, Takahashi K, Wang J. 2020. Eco-friendly green synthesis of clove buds extract functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. Journal of Microbiological Methods, 173: 105934. doi: 10.1016/j.mimet.2020.105934

Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. 2021. Nanotechnology as a processing and packaging tool to ımprove meat quality and safety. Foods, 10(11): 2633. doi: 10.3390/foods10112633

Lee SH, Jun B-H. 2019. Silver Nanoparticles: Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20(4): 865. doi: 10.3390/ijms20040865

Li W, Li L, Zhang H, Yuan M, Qin Y. 2018. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. Journal of Food Processing and Preservation, 42(1): 1-9. doi: 10.1111/jfpp.13362

Li Z, Tian C, Jiao D, Li J, Li Y, Zhou X, Zhao H, Zhao Y, Han X. 2022a. Synergistic effects of silver nanoparticles and cisplatin in combating inflammation and hyperplasia of airway stents. Bioactive Materials, 9: 266-280. doi: 10.1016/j.bioactmat.2021.07.029

Li H, Cai Q, Yan X, Jie G, Jie G. 2022b. Ratiometric electrochemical biosensor based on silver nanoparticles coupled with walker amplification for sensitive detection of microRNA. Sensors and Actuators B: Chemical, 353, 131115. doi: 10.1016/j.snb.2021.131115

Liang J, Wang J, Li S, Xu L, Wang R, Chen R, Sun Y. 2019. The size-controllable preparation of chitosan/silver nanoparticle composite microsphere and its antimicrobial performance. Carbohydrate Polymers, 220: 22-29. doi: 10.1016/j.carbpol.2019.05.048

Mahdi SS, Vadood R, Nourdahr R. 2012. Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature. Global Veterinaria, 9(3): 284-289. doi: 10.5829/idosi.gv.2012.9.3.1827

Marchiore, N. G., Manso, I. J., Kaufmann, K. C., Lemes, G. F., de Oliveira Pizolli, A. P., Droval, A. A., Bracht, L., Gonçalves, O. H., Leimann, F. V. 2017. Migration evaluation of silver nanoparticles from antimicrobial edible coating to sausages. LWT-Food Science and Technology, 76: 203-208. doi: 10.1016/j.lwt.2016.06.013

Matar GH, Andac M. 2021. Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polymer Bulletin, 78(11): 6095-6113. doi: 10.1007/s00289-020-03418-7

Matar GH, Akyüz G, Kaymazlar E, Andaç M. 2023. An investigation of green synthesis of silver nanoparticles using Turkish honey against pathogenic bacterial strains. Biointerface Research in Applied Chemistry, 13(2): 195. doi: 10.33263/BRIAC132.195

Meretoudi A, Banti CN, Raptis PK, Papachristodoulou C, Kourkoumelis N, Ikiades AA, Zoumpoulakis P, Mavromoustakos T, Hadjikakou SK. 2021. Silver nanoparticles from oregano leaves’ extractsas antimicrobial components for non-infected hydrogel contact lenses. International Journal of Molecular Sciences, 22(7): 3539. doi: 10.3390/ijms22073539

Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN. 2014. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. Journal of Food Science, 79(4): M675-684. doi: 10.1111/1750-3841.12400

Naddeo JJ, Ratti M, Malley S, Griepenburg J, Bubb D, Klein E. 2015. Antibacterial properties of nanoparticles: a comparative review of chemically synthesized and laser-generated particles. Advanced Science, Engineering and Medicine, 7: 1044-1057. doi: 10.1166/asem.2015.1811

Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Abdullah CAC, Ahmad SA. 2022. Synthesis, characterization and biomedical application of silver nanoparticles. Materials (Basel), 15(2): 427. doi: 10.3390/ma15020427

Natsuki J. 2015. A review of silver nanoparticles: synthesis methods, properties and applications. International Journal of Materials Science and Applications, 4(5): 325-332. doi: 10.11648/j.ijmsa.20150405.17

Nie P, Zhao Y, Xu H. 2023. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environment Safety, 253: 114636. doi: 10.1016/j.ecoenv.2023.114636

Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. 2020. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Bioscience, 36: 100609. doi: 10.1016/j.fbio.2020.100609

Oluwatofarati SW, Olayemi RA, Rahman A. 2018. Effects of silver bio-nanoparticle treatment on the wet preservation, technological, and chemical qualities of meat. Food Quality and Safety, 2(3): 159-164. doi: 10.1093/fqsafe/fyy014

Ong WTJ, Nyam KL. 2022. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi Journal of Biological Sciences, 29(4): 2085-2094. doi: 10.1016/j.sjbs.2022.01.035

Owoseni-Fagbenro KA, Saifullah S, Imran M, Perveen S, Rao K, Fasina TM, Olasupo IA, Adams LA, Ali I, Shah MR. 2019. Egg proteins stabilized green silver nanoparticles as delivery system for hesperidin enhanced bactericidal potential against resistant S. aureus. Journal of Drug Delivery Science and Technology, 50: 347-354. doi: 10.1016/j.jddst.2019.02.002

Panea B, Ripoll G, González J, Fernández-Cuello Á, Albertí P. 2014. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123: 104-112. doi: 10.1016/j.jfoodeng.2013.09.029.

Patino JH, Henríquez LE, Restrepo DA, Lantero MI, García MA. 2022. Influence of polyamide composite casings with silver–zinc crystals on the quality of beef and chicken sausages during their storage. Journal of Food Science and Technology, 59: 75-85. doi: 10.1007/s13197-021-04983-z

Pichardo J, Chilakapati MK, Castro-Beltrán R, Cardoso-Avila P. 2015. Photochemical transformation of silver nanoparticles by combined blue and green irradiation. Journal of Nanoparticle Research, 17: 160. doi: 10.1007/s11051-015-2920-x

Pino-Ramos VH, Audifred-Aguilar JC, Sánchez-Obregón R, Bucio E. 2021. Antimicrobial polyurethane catheters synthesized by grafting-radiation method doped with silver nanoparticles. Reactive and Functional Polymers, 167: 105006. doi: 10.1016/j.reactfunctpolym.2021.105006

Pipattanachat S, Qin J, Rokaya D, Thanyasrisung P, Srimaneepong V. 2021. Biofilm inhibition and bactericidal activity of NiTi alloy coated with graphene oxide/silver nanoparticles via electrophoretic deposition. Scientific Reports, 11(1): 14008. doi: 10.1038/s41598-021-92340-7

Pulit-Prociak J, Banach M. 2016. Silver nanoparticles–a material of the future…? Open Chemistry, 14(1): 76-91. doi: 10.1515/chem-2016-0005

Pushparaj K, Liu W-C, Meyyazhagan A, Orlacchio A, Pappusamy M, Vadivalagan C, Robert AA, Arumugam VA, Kamyab H, Klemeš JJ, Khademi T, Mesbah M, Chelliapan S, Balasubramania B. 2022. Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy, 240: 122732. doi: 10.1016/j.energy.2021.122732

Rajoriya P, Barcelos MCS, Ferreira DCM, Misra P, Molina G, Pelissari FM, Shukla PK, Ramteke PW. 2021. Green silver nanoparticles: Recent trends and technological developments. Journal of Polymers and the Environment, 29(9): 2711-2737. doi: 10.1007/s10924-021-02071-z

Rodriguez-Acosta H, Tapia-Rivera JM, Guerrero-Guzman A, Hernandez-Elizarraraz E, Hernandez-Diaz JA, Garza-Garcia JJO, Pérez-Ramírez PE, Velasco-Ramírez SF, Ramírez-Anguiano AC, Velázquez-Juárez G, Velázquez-López JM, Sánchez-Toscano YG, García-Morales S, Flores-Fonseca MM, García-Bustos DE, Sánchez-Chiprés DR, Zamudio-Ojeda A. 2022. Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract. Journal of Tissue Viability, 31(1): 173-179. doi: 10.1016/j.jtv.2021.10.004

Roy A. 2021. Plant derived silver nanoparticles and their therapeutic applications. Current Pharmaceutical Biotechnology, 22(14): 1834-1847. doi: 10.2174/1389201021666201027155708

Saeed S, Iqbal A, Ashraf MA. 2020. Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environmental Science and Pollution Research, 27(30): 37347-37356. doi: 10.1007/s11356-020-07610-0

Shankar S, Khodaei D, Lacroix M. 2021. Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocolloids, 117: 106750. doi: 10.1016/j.foodhyd.2021.106750

Simbine EO, Rodrigues LDC, Lapa-Guimarães J, Kamimura ES, Corassin CH, De Oliveira CAF. 2019. Application of silver nanoparticles in food packages: A review. Food Science and Technology, Campinas, 39(4): 793-802. doi: 10.1590/fst.36318

Siqueira MC, Aouada MRM, Castro VLS, Brandao HM, Rech RR, Marconcini JM, Mattoso LHC. 2013. Caracterizaçao e avaliaçao da toxicidade de nanoparticulas de prata para incorporaçao em matriz polimerica para uso em embalagens de alimentos. VII Workshop de Nanotechnologia Aplicada ao Agronegocio, Embrapa Instrumentaçao, 10 a 13 de Junho de 2013, Sao Carlos, Brazil, pp. 542-544.

Sofi MA, Sunitha S, Sofi MA, Khadheer Pasha SK, Choi D. 2022. An overview of antimicrobial and anticancer potential of silver nanoparticles. Journal of King Saud University-Science, 34(2): 101791. doi: 10.1016/j.jksus.2021.101791

Takamiya AS, Monteiro DR, Gorup LF, Silva EA, de Camargo ER, Gomes-Filho JE, de Oliveira SHP, Barbosa DB. 2021. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science & Engineering C-Materials for Biological Applications, 118: 111341. doi: 10.1016/j.msec.2020.111341

Thames HT, Fancher CA, Colvin MG, McAnally M, Tucker E, Zhang L, Kiess AS, Dinh TTN, Sukumaran AT. 2022. Spoilage bacteria counts on broiler meat at different stages of commercial poultry processing plants that use peracetic acid. Animals, 12: 1439. doi: 10.3390/ani12111439

Vega-Baudrit J, Gamboa S, Rojas E, Martinez V. 2019. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. International Journal of Biosensors & Bioelectronics, 5(5): 166-173. doi: 10.15406/ijbsbe.2019.05.00172

Wang W, Yu Z, Alsammarraie FK, Kong F, Lin M, Mustapha A. 2020. Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids, 100: 105411. doi: 10.1016/j.foodhyd.2019.10541

Wu Z, Zhou W, Pang C, Deng W, Xu C, Wang X. 2019. Multifunctional chitosan-based coating with liposomes containing laurel essential oils and nanosilver for pork preservation. Food Chemistry, 295: 16-25. doi: 10.1016/j.foodchem.2019.05.114

Zhao X, Wang K, Ai C, Yan L, Jiang C, Shi J. 2021. Improvement of antifungal and antibacterial activities of food packages using silver nanoparticles synthesized by iturin A. Food Packaging and Shelf Life, 28: 100669. doi: 10.1016/j.fpsl.2021.100669

Downloads

Published

30.09.2023

How to Cite

Akyüz, G., Bıyık, Şule, Soyocak, H., Andaç, M., & Turhan, S. (2023). The Synthesis, Functions and Mechanisms of Action of the Silver Nanoparticles and Their Uses in the Processing and Preservation of Meat and Meat Products. Turkish Journal of Agriculture - Food Science and Technology, 11(9), 1768–1783. https://doi.org/10.24925/turjaf.v11i9.1768-1783.6099

Issue

Section

Review Articles