Production of tomato seedlings submitted to treatments with foliar application of paclobutrazol

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i4.521-526.5820

Keywords:

Seedlings, tomato, growth regulator, paclobutrazol, gibberellin

Abstract

Paclobutrazol (PBZ) is a growth regulator that widely used in horticulture and in the tomato seedling growth to compact the shoots, increase the stem diameter and, root biomass, allowing more tolerance of the seedlings against adverse weather conditions. The objective of this work was to evaluate the rates of paclobutrazol (0, 4, 7, 10 and 13 mg L-1) applied 15 days after sowing by foliar spray on the growth, chemical composition and xylem vessel number of tomato seedlings cultivated in two periods. The PBZ regardless of the application rate reduced the height of tomato seedlings in both growth periods. The basal stem diameter and leaf area were increased with 13 mg L-1 of PBZ. The lignin percentage also increased with 10 and 13 mg L-1 of PBZ as compared to control for both periods. The number of xylem vessel was not affected by PBZ application on the seedlings in the first period. PBZ application at rates of 7 and 10 mg L-1 increased the xylem vessel number in the second period. In general, the application of 13 mg L-1 of PBZ generated seedling more robust to overcome climate adversities.

Author Biographies

Vivyan J. Conceição, Universidade de São Paulo (Esalq/USP)

Crop Science Department, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (Esalq/USP), Piracicaba, SP 13418-900, Brazil

Simone C. Mello, Universidade de São Paulo (Esalq/USP)

Crop Science Department, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (Esalq/USP), Piracicaba, SP 13418-900, Brazil

Mayara Rodrigues, Universidade de São Paulo (Esalq/USP)

Crop Science Department, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (Esalq/USP), Piracicaba, SP 13418-900, Brazil

Durval Dourado Neto, Universidade de São Paulo (Esalq/USP)

Crop Science Department, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (Esalq/USP), Piracicaba, SP 13418-900, Brazil

Marcelle Michelotti Bettoni, Indepent consultant of Agriculture. Curitiba, SP, Brazil

Indepent consultant of Agriculture. Curitiba, SP, Brazil

Tefide Kizildeniz, Niğde Ömer Halisdemir University

Department of Biosystems Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51200, Niğde TURKEY

References

Bañón, S., González, A., Cano, E. A., Franco, J. A., & Fernández, J. A. (2002). Growth, development and colour response of potted Dianthus caryophyllus cv. Mondriaan to paclobutrazol treatment. Scientia Horticulturae, 94(3-4), 371-377.

Berova, M., & Zlatev, Z. (2000). Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regulation, 30, 117-123.

Burondkar, M. M., Upreti, K. K., Ambavane, A. R., Rajan, S., Mahadik, S. G., & Bhave, S. G. (2016). Hormonal changes during flowering in response to paclobutrazol application in mango cv. Alphonso under Konkan conditions. Indian Journal of Plant Physiology, 21, 306-311.

Chen, F., Xu, M., Wang, L., & Li, J. (2011). Preparation and characterization of organic aerogels by the lignin-resorcinol-formaldehyde copolymer. BioResources, 6(2), 1262-1272.

Desta, B., & Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, 1-15.

Flores, L. L. C., Alcaraz, T. D. J. V., Ruvalcaba, L. P., Valdés, T. D., Tafoya, F. A., Torres, N. D. Z., & Juárez, M. G. Y. (2018). Paclobutrazol applied on cotyledonal leaves and quality of cucumber, squash, melon and watermelon seedlings. Agricultural Sciences, 9(3), 264-271.

Graebe, J. E. (1987). Gibberellin biosynthesis and control. Annual review of plant physiology, 38(1), 419-465.

Himmelbauer, M. L., Loiskandl, A. W., & Kastanek, A. F. (2004). Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant and soil, 260, 111-120.

Jabir, O., Mohammed, B., Benard Kinuthia, K., Almahadi Faroug, M., Nureldin Awad, F., Muleke, E. M., ... & Liu, L. (2017). Effects of gibberellin and gibberellin biosynthesis inhibitor (paclobutrazol) applications on radish (Raphanus sativus) taproot expansion and the presence of authentic hormones. International Journal of Agriculture & Biology, 19(4).

Karnovsky, M. J. (1961). A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol., 27: 137A.

March, S. R., Martins, D., & McElroy, J. S. (2013). Growth inhibitors in turfgrass. Planta Daninha, 31, 733-747.

Mohammadi, M. H. S., Etemadi, N., Arab, M. M., Aalifar, M., Arab, M., & Pessarakli, M. (2017). Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry, 111, 129-143.

Oliveira, C. E. D. S., Zoz, T., Jalal, A., Seron, C. D. C., Silva, R. A. D., & Teixeira Filho, M. C. (2022). Tolerance of tomato seedling cultivars to different values of irrigation water salinity. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(10), 697-705.

Peng, Y., Liu, R., Cao, J., & Chen, Y. (2014). Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose. Applied Surface Science, 317, 385-392.

Rademacher, W. (2000). Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annual review of plant biology, 51(1), 501-531.

Seleguini, A., Júnior, M. J. D. A. F., da Silva Benett, K. S., Lemos, O. L., & Seno, S. (2013). Estratégias para produção de mudas de tomateiro utilizando paclobutrazol. Semina: Ciências Agrárias, 34(2), 539-548.

Srivastava, V., McKee, L., and Bulone, V. (2017). Plant Cell Walls, in: ELS. Chichester, pp. 1–17. https://doi.org/10.1002/9780470015902.a0001682.pub3.

Teixeira, E. C., Matsumoto, S. N., Silva, D. D. C., Pereira, L. F., Viana, A. E. S., & Arantes, A. D. M. (2019). Morphology of yellow passion fruit seedlings submitted to triazole induced growth inhibition. Ciência e Agrotecnologia, 43, e020319.

Tsegaw, T., Hammes, S., & Robbertse, J. (2005). Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. HortScience, 40(5), 1343-1346.

Wang, Y., Chantreau, M., Sibout, R., & Hawkins, S. (2013). Plant cell wall lignification and monolignol metabolism. Frontiers in plant science, 4, 220.

Xu, Y., Ding, H., Luo, C., Zheng, Y., Xu, Y., Li, X., ... & Zhang, L. (2018). Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method. Chemical Engineering Journal, 334, 2520-2529.

Downloads

Published

29.04.2024

How to Cite

Conceição, V. J., Mello, S. C., Rodrigues, M., Dourado Neto, D., Michelotti Bettoni, M., & Kizildeniz, T. (2024). Production of tomato seedlings submitted to treatments with foliar application of paclobutrazol. Turkish Journal of Agriculture - Food Science and Technology, 12(4), 521–526. https://doi.org/10.24925/turjaf.v12i4.521-526.5820

Issue

Section

Research Paper