Effect of L-Arginine on Alleviating Salt Stress through Antioxidant Enzymes Activity in Zea mays

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i3.447-452.6624

Keywords:

NaCl, L-arginine, SOD, POD, APX, QPCR

Abstract

Arginine plays a multifaceted role in stress metabolism in plants, acting as both a precursor for various metabolites and a signaling molecule that can modulate plant responses to environmental stresses. Salinity stress remains a significant challenge for crop productivity, particularly in maize (Zea mays) cultivation. This study investigates the potential role of L-arginine (L-arg) in mitigating salt-induced oxidative damage by modulating lipid peroxidation, antioxidant enzymes activity and expression levels of antioxidant enzymes in maize. Our findings showed that, H2O2 and MDA levels increased in 200 mM NaCl was imposed while 1.5 and 3 mM L-arg treatments reduced these levels. Also, the activity of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) and the expression levels of ZmSOD, ZmPOD and ZmAPX gradually increased in salt stress while L-arg quite increased these parameters. The highest increases were determined in SOD enzyme activity and ZmSOD gene expression. This research deepens our understanding of the molecular and biochemical responses to salinity stress, offering crucial knowledge that could lead to the application of L-arg to enhance plant resilience against environmental challenges.

References

Ahmad, S., Cui, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., Su, W., Javed, T., El-Serehy E. A., Jia, Z., & Han, Q. (2021). Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. Journal of Plant Growth Regulation, 40, 1270-1283. https://doi.org/10.1007/s00344-020-10187-0

Cao, L., Ma, C., Ye, F., Pang, Y., Wang, G., Fahim, A. M., & Lu, X. (2023). Genome-wide identification of NF-Y gene family in maize (Zea mays L.) and the positive role of ZmNF-YC12 in drought resistance and recovery ability. Frontiers in Plant Science, 14, 1159955. https://doi.org/10.3389/fpls.2023.1159955

Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2016). Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 90, 856–867. https://doi.org/10.1111/tpj.13299

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309-314. https://doi.org/10.1104/pp.59.2.309

Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: unraveling the signaling networks. Frontiers in Plant Science, 5, 151. https://doi.org/10.3389/fpls.2014.00151

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi.org/10.1016/j.abb.2022.109248

Laspina, N. V., Groppa, M. D., Tomaro, M. L., & Benavides, M. P. (2005). Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Journal of Plant Science, 169, 323–330. https://doi.org/10.1016/j.plantsci.2005.02.007

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Malekzadeh, P., Hatamnia, A. A., & Tiznado-Hernández, M. E. (2023). Arginine catabolism induced by exogenous arginine treatment reduces the loss of green color rate in broccoli florets. Physiological and Molecular Plant Pathology, 124, 101973. https://doi.org/10.1016/j.pmpp.2023.101973

Moradbeygi, H., Jamei, R., Heidari, R., & Darvishzadeh, R. (2020). Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae, 272, 109537. https://doi.org/10.1016/j.scienta.2020.109537

Mostofal, M. G., Saegusa, D., Fujita, M., & Tran, L. S. (2015). Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Frontiers in Plant Science, 6, 662–676. https://doi.org/10.3389/fpls.2015.01055

Murshed, R., Lopez-Lauri, F., Keller, C., Monnet, F., & Sallanon, H. (2008). Acclimation to drought stress enhances oxidative stress tolerance in Solanum lycopersicum L. fruits. Plant Stress, 2(2), 145-151.

Nasibi, F., Khodashenas, M., & Nasibi, N. (2020). Priming with L-arginine reduces oxidative damages in Carthamus tinctorius seedlings under the toxic levels of lead. Journal of Plant Physiology and Breeding, 10(2), 13-26. https://doi.org/10.22034/JPPB.2020.13098

Nejadalimoradi, H., Nasibi, F., Kalantari, K. M., & Zanganeh, R. (2014). Effect of seed priming with L-arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. Agricultural Community, 2(1), 23–30.

Noreen, S., Sultan, M., Akhter, M. S., Shah, K. H., Ummara, U., Manzoor, H., Ulfat, M., Alyemeni, M. N., & Ahmad, P. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiology and Biochemistry, 158, 244-254. https://doi.org/10.1016/j.plaphy.2020.11.007

Pakkish, Z., & Mohammadrezakhani, S. (2021). Quality characteristics and antioxidant activity of the mango (Mangifera indica) fruit under arginine treatment. Journal of Plant Physiology and Breeding, 11(1), 63-74. https://doi.org/10.22034/JPPB.2021.13790

Park, H. J., Kim, W. Y., & Yun, D. J. (2016). New insight of salt stress signaling in plant. Molecules and Cells, 39, 447–459. https://doi.org/10.14348/molcells.2016.0083

Park, H. J., Kim, W. Y., & Yun, D. J. (2013). A role for GIGANTEA. Plant Signaling and Behaviour, 8, e24820. https://doi.org/10.4161/psb.24820

Ragaey, M. M., Sadak, M. S., Dawood, M. F., Mousa, N. H., Hanafy, R. S., & Latef, A. A. H. A. (2022). Role of signaling molecules sodium nitroprusside and arginine in alleviating salt-Induced oxidative stress in wheat. Plants, 11(14), 1786. https://doi.org/10.3390/plants11141786

Ramadan, A. A., Abd Elhamid, E. M., & Sadak, M. S. (2019). Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bulletin of the National Research Centre, 43(1), 1-12. https://doi.org/10.1186/s42269-019-0156-0

Ren, J., Ye, J., Yin, L., Li, G., Deng, X., & Wang, S. (2020). Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy, 10(5), 663. https://doi.org/10.3390/agronomy10050663

Sardar, H., Khalid, Z., Ahsan, M., Naz, S., Nawaz, A., Ahmad, R., Razzak, K., Wabaidur, S. M., Jacquard, C., Siric, I., Kumar, P., & Abou Fayssal, S. (2023). Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants, 12(5), 1115. https://doi.org/10.3390/plants12051115

Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., & Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25, 1149-1161. https://doi.org/10.1007/s12298-019-00692-2

Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Science, 16, 13561–13578. https://doi.org/10.3390/ijms160613561

Sofy, A. R., Dawoud, R. A., Sofy, M. R., Mohamed, H. I., Hmed, A. A., & El-Dougdoug, N. K. (2020). Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules, 25(10), 2341. https://doi.org/10.3390/molecules25102341

Sun, M., Cao, Y., Xin, Y., Mu, X., Hao, Y., Yang, J., Niu, X., & Li, D. (2023). Effects of L-arginine and arginine-arginine dipeptide on amino acids uptake and αS1-casein synthesis in bovine mammary epithelial cells. Journal of Animal Science, 101, skad339. https://doi.org/10.1093/jas/skad339

Trevizan, C. B., Bonacina, C., Lourenceto, L., dos Santos, T. B., & de Souza, S. G. H. (2019). Salt stress in popcorn genotypes trigger changes of antioxidant enzymes. Australian Journal of Crop Science, 13(10), 1607-1616. https://doi.org/10.21475/ajcs.19.13.10.p1830

Usman, S., Yaseen, G., Noreen, Z., Rizwan, M., Noor, H., & Elansary, H. O. (2023). Melatonin and arginine combined supplementation alleviate salt stress through physiochemical adjustments and improved antioxidant enzymes activity in Capsicum annuum L. Scientia Horticulturae, 321, 112270. https://doi.org/10.1016/j.scienta.2023.112270

Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Reviews of Plant Biology, 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005

Velikova, V., Yordanov, I., & Edreva, A. J. P. S. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/s0168-9452(99)00197-1

Yetişsin, F., & Karakaya, A. (2022). Tuz stresi altındaki mısır fidelerine aseton o-(4 klorofenilsülfonil) oksim ön uygulamasının biyokimyasal parametreler üzerine etkilerinin araştırılması. Artvin Çoruh Üniversitesi, Orman Fakültesi Dergisi, 23(1), 74-83. https://doi.org/10.17474/artvinofd.980327

Zhang, S., Jiang, H., Peng, S., Korpelainen, H., & Li, C. (2011). Sex-related differences in morphological, physiological and ultrastructural responses of Populus cathayana to chilling. Journal of Experimental Botany, 62(2), 675–686. https://doi.org/10.1093/jxb/erq306

Downloads

Published

23.03.2024

How to Cite

Arslan Yüksel, E. (2024). Effect of L-Arginine on Alleviating Salt Stress through Antioxidant Enzymes Activity in Zea mays. Turkish Journal of Agriculture - Food Science and Technology, 12(3), 447–452. https://doi.org/10.24925/turjaf.v12i3.447-452.6624

Issue

Section

Research Paper