Effect of Salinity and Different Calcium Doses on Yield and Quality of Tomato

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i11.2179-2184.6428

Keywords:

Salinity, Calcium, Yield, Quality, Tomato

Abstract

In this study, different salinity treatments were applied by a modified Hoagland solution (2, 4 and 6 dS/m) with four calcium levels (0, 50, 100 and 200 ppm) to evaluate the effect on yield and quality of tomato in soilles culture. Standard Hoagland solution was prepared at 2 dS/m, and NaCl was used for high salt concentrations (4 and 6 dS/m). While the high salinity (4 and 6) caused a decrease in marketable yield, high calcium doses (100 and 200 ppm) significantly reduced the effect of salinity on yield. The increase in calcium from 100 ppm to 200 ppm at a salt concentration of 6 dS/m increased the marketable yield from 122.51 tons/ha to 199.74 tons/ha. While leaf chlorophyll content was not affected by salt concentrations, increasing calcium doses caused an increase in chlorophyll content. Especially under high salt stress (6 dS/m), the effect of calcium on chlorophyll increase was more pronounced. While electrical conductivity, soluble solid dry matter (Brix) and titretable acidity in the fruits increased as salinity increased, pH decreased. As calcium increased in high salinity, Brix and titratable acidity decreased. As a result, high salinity caused a significant decrease in marketable and total yield, while high calcium application under salt stress reduced the yield losses. Salt stress x calcium interaction significantly affected fruit quality parameters.

References

Ahmad P, Abd_Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KH. 2018. Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Scientific reports, 8(1), 1-15. doi: 10.1038/s41598-018-31917-1

Canene-Adams K, Campbell JK, Zaripheh S, Jeffery EH, Erdman Jr JW. 2005. The tomato as a functional food. The Journal of Nutrition, 135(5), 1226-1230. doi: 10.1093/jn/135.5.1226

Cogswell ME, Zhang Z, Carriquiry AL, Gunn ZP, Kuklina EV, Saydah SH, Yang Q, Moshfegh AJ. 2012. Sodium and potassium intakes among US adults: NHANES 2003–2008. The American Journal of Clinical Nutrition 96(3):647–657. doi: 10.3945/ajcn.112.034413

Cuartero J, Fernández-Muñoz R. 1998. Tomato and salinity. Scientia horticulturae, 78(1-4), 83-125. doi: 10.1016/S0304-4238(98)00191-5

De Freitas ST, Amarante CVT, Labavitch JM, Mitcham E. 2010. Cellular approach to understand bitter pit development in apple fruit. Postharvest Biology and Technology 57, 6–13. doi: 10.1016/j.postharvbio.2010.02.006

Farooq H, Bashir MA, Khalofah A, Khan KA, Ramzan M, Hussain A, ... Ahmad Z. 2021. Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environmental Bulletin, 30(04), 3557-3564.

Grattan SR, Grieve CM. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia horticulturae, 78(1-4), 127-157. doi: 10.1016/S0304-4238(98)00192-7

Ho LC. White PJ. 2005. A cellular hypothesis for the induction of blossom end rot in tomato fruit. Annals of Botany 95, 571–581. doi: 10.1093/aob/mci065

Hoagland DR, Arnon DI. 1950. The Waterculture method for growing plants without soil. California Agriculture Experiment Station Circular, 347 p.

Islam MM, Jahan K, Sen A, Urmi TA, Haque MM, Ali HM, Siddiqui MH, Murata Y. 2023. Exogenous Application of Calcium Ameliorates Salinity Stress Tolerance of Tomato (Solanum lycopersicum L.) and Enhances Fruit Quality. Antioxidants, 12, 558. doi: 10.3390/antiox12030558

Karaman MR, Turan M, Yıldırım E, Gunes A, Esringu A, Demirtaş A, Gursoy A, Dizman M, Tutar A, Kilinc H. 2012. Ca ve B-Humat bilesiklerinin domates (Lycopersicon esculentum L.) bitkisinin verim parametreleri ile klorofil ve stoma geçirgenliği üzerine etkilerinin belirlenmesi. Sakarya Üniversitesi Fen-Edebiyat Dergisi, 14(1), 177-185.

Khursheda P, Ahamed KU, Islam MM, Haque MN. 2015. Response of tomato plant under salt stress: role of exogenous calcium. Journal of Plant Sciences, 10(6), 222-233. doi: 10.3923/jps.2015.222.233

Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, ... Causse, M. 2007. Tomato. Vegetables, 1-125. doi: 10.1007/978-3-540-34536-7_1

Maggio A, De Pascale S, Angelino G, Ruggiero C, Barbieri G. 2004. Physiological response of tomato to saline irrigation in long-term salinized soils. European Journal of Agronomy, 21(2), 149-159. doi: 10.1016/S1161-0301(03)00092-3

Nizam R, Hosain MT, Hossain ME, Islam MM, Haque MA. 2019. Salt stress mitigation by calcium nitrate in tomato plant. Asian Journal of Medical and Biological Research, 5(1), 87-93. doi: 10.1051/agro:2001130

Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, Urban L, Lachaal M. 2014. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem 83: 126–133. doi: 10.1016/j.plaphy.2014.07.019

Petersen KK, Willumsen J, Kaack K. 1998. Composition and taste of tomatoes as affected by increased salinity and different salinity sources. The Journal of Horticultural Science and Biotechnology, 73(2), 205-215. doi: 10.1080/14620316.1998.11510966

Saito T, Matsukura C. 2015. Effect of salt stress on the growth and fruit quality of tomato plants. Abiotic Stress Biology in Horticultural Plants, 3-16. doi: 10.1007/978-4-431-55251-2_1

Suzuki K, Shono M, Egawa Y. 2003. Localization of calcium in the pericarp cells of tomato fruit during the development of blossom-end rot. Protoplasma 222, 149–156. doi: 10.1007/s00709-003-0018-2

Tabatabaeian J. 2014. Effect of calcium nutrition on reducing the effects of salinity on tomato plant. American Journal of Plant Nutrition and Fertilization Technology, 4(1), 11-17.

Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N. 2020. Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition, 43(1), 28-35. doi: 10.1080/01904167.2019.1659324

Tuna AL, Yıldıztekin M, Köşkeroğlu S, Yokaş İ. 2017. Tuz Etkisi Altındaki Domates Bitkisinde Potasyum ve Kalsiyum Antioksidatif Sistemi Etkiler mi?. Türkiye Tarımsal Araştırmalar Dergisi, 4(1), 71-78. doi: 10.19159/tutad.300711

Tüzel Y, Tüzel IH, Ücer F. 2003. Effects of salinity on tomato growing in substrate culture. In International Symposium on Managing Greenhouse Crops in Saline Environment 609 (pp. 329-335). doi: 10.17660/ActaHortic.2003.609.49

Zhang P, Senge M, Dai Y. 2016. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Reviews in Agricultural Science, 4, 46-55. doi: 10.7831/ras.4.46

Downloads

Published

27.11.2023

How to Cite

Shakir, Z. R., & Geboloğlu, N. (2023). Effect of Salinity and Different Calcium Doses on Yield and Quality of Tomato. Turkish Journal of Agriculture - Food Science and Technology, 11(11), 2179–2184. https://doi.org/10.24925/turjaf.v11i11.2179-2184.6428

Issue

Section

Research Paper