Yield and Quality Traits of Black Cumin (Nigella sativa L.) Genotypes in Response to the Different Sowing Dates

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i12.2276-2287.6159

Keywords:

Sowing date, genotype, quality analysis, ultrasonic oil extraction, Chemical components

Abstract

Black cumin has been used in many countries for the treatment of diseases such as cancer and diabetes, and for thousands of years as a spice, flavoring in products such as bread, and as a food preservative in pickles. Too much delay in the sowing of black cumin has a negative effect on plant growth. In order to determine the most suitable sowing dates for different black cumin genotypes, an experiment was conducted in the open-field conditions of the Eastern Mediterranean region of Türkiye at Çukurova University, for two years, in 2020 and 2021, in three different sowing dates (October 15th, November 01st, and November 15th) with three different black cumin genotypes (Çameli cultivar (G1), Adana population (G2) and Iraq population (G3)). The findings of this research demonstrated significant differences in the agronomic characteristics and overall quality of black cumin. The main components were p-cymene (51.45%-66.33%), trans-4-Methoxythujane (8.40%-11.90%), thymoquinone (0.11%-19.26%), γ-Terpinene (1.28%-9.09%), and limonene (2.93%-4.50%). The main fatty acids were determined as linoleic acid (53.97%-57.56%), oleic acid (20.98-26.40), and palmitic acid (13.73%-15.02%). Consequently, the low number of flowers and the high temperatures observed in May, along with the early spring frosts, negatively affected the fertilization of the flowers. The seed yield was adversely affected because some of the seeds could not mature.

Author Biographies

Muzaffer Barut, Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Türkiye

 

 

 

Asiye Sena Cavdar, Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Türkiye

 

 

 

Leyla Sezen Tansı, Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330 Adana, Türkiye

 

 

Şengül Karaman, Biology Department, Science and Letter Faculty, Kahramanmaras Sutcu Imam University, 46100, Kahramanmaras, Türkiye

 

 

 

References

Akhtar MT, Qadir R, Bukhari I, Ashraf RA, Malik Z, Zahoor S, Murtaza MA, Siddique F, Shah SNH, Saadia M. 2020. Antidiabetic potential of Nigella sativa L seed oil in alloxaninduced diabetic rabbits. Tropical Journal of Pharmaceutical Research, 19: 283-289. https://doi.org/10.4314/tjpr.v19i2.10.

Al-Jassir MS. 1992. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem, 45: 239-242.

Al Turkmani MO, Karabet F, Mokrani L, Soukkarieh C. 2015. Chemical composition and in vitro antioxidant activities of essential oil from Nigella sativa L. seeds cultivated in Syria. Int J Chemtech Res, 8: 76-82. (https://www.sphinxsai.com/ 2015/ch_vol8_no10/1/(76-82)V8N10CT.pdf).

Ali H, El-Abeid SE, Shaaban SA. 2020. Effect of some organic acids on growth, yield, oil production and enhancing anatomical changes to reduce fusarium wilt of Nigella sativa L. Plant Soil, 20: 9231-9243. (http://www.plantarchives.org/20-2/9231-9243%20(7031).pdf).

Alshwyeh HA, Aldosary SK, Ilowefah MA, Shahzad R, Shehzad A, Bilal S, Lee I-J, Mater JAA, Al-Shakhoari FN, Alqahtani WA. 2022. Biological Potentials and Phytochemical Constituents of Raw and Roasted Nigella arvensis and Nigella sativa. Molecules, 27: 550. https://doi.org/10.3390/molecules27020550.

Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. 2021. Health beneficial and pharmacological properties of p-cymene. Food and Chemical Toxicology, 153: 112259. https://doi.org/10.1016/j.fct.2021.112259.

Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, Sarkar FH, Mohammad RM. 2010. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutrition and cancer, 62: 938-946. https://doi.org/10.1080/ 01635581.2010.509832.

Barut M, Tansi L, Akyuz A, Karaman S. 2021. Quality and yield of different basil (Ocimum basilicum L.) cultivars with various planting and cutting times under hot mediterranean climate. Appl Ecol Environ Res, 19: 3115-3136. https://doi.org/10.1016/j.sajb.2022.06.020.

Barut M, Tansi LS, Bicen G, Karaman S. 2022. Deciphering the quality and yield of heteromorphic seeds of marigold (Calendula officinalis L.) under high temperatures in the Eastern Mediterranean region. South African Journal of Botany, 149: 303-314. http://dx.doi.org/10.15666/ aeer/1904_31153136.

Barut, M., Tansi, L. S., Karaman, Ş. (2023). Unveiling the phytochemical variability of fatty acids in world marigold (Calendula officinalis L.) germplasm affected by genotype. International Journal of Agriculture Environment and Food Sciences, 7: 639-649.

Bayati P, Karimmojeni H, Razmjoo J. 2020. Changes in essential oil yield and fatty acid contents in black cumin (Nigella sativa L.) genotypes in response to drought stress. Industrial Crops and Products, 155: 112764. https://doi.org/10.1016/ j.indcrop.2020.112764.

Beyzi E. 2020. Chemometric methods for fatty acid compositions of fenugreek (Trigonella foenum-graecum L.) and black cumin (Nigella sativa L.) seeds at different maturity stages. Industrial crops and products, 151: 112488. https://doi.org/10.1016/j.indcrop.2020.112488.

Bosh Z, Danesh Shahraki A, Ghobadinia M, Saeedi K. 2019. The effect of plant growth promoting rhizobacteria on agro-morphological traits of black cumin (Nigella sativa L.) under water deficit stress. Environmental Stresses in Crop Sciences, 12: 525-537. http://dx.doi.org/10.22077/escs.2018.1347.1282.

Botnick I, Xue W, Bar E, Ibdah M, Schwartz A, Joel DM, Lev E, Fait A, Lewinsohn E. 2012. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. Molecules, 17: 10159-10177. https://doi.org/10.3390/molecules170910159.

Bouyahya A, Guaouguaou F-E, Dakka N, Bakri Y. 2017. Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant Origanum compactum (Benth) and their main compounds. Asian Pacific Journal of Tropical Disease, 7: 628-640. https://doi.org/10.12980/ apjtd.7.2017D7-31.

Burdock G.A. 2022. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regulatory Toxicology and Pharmacology, 128: 105088. https://doi.org/10.1016/j.yrtph.2021.105088.

Burits M, Bucar F. 2000. Antioxidant activity of Nigella sativa essential oil. Phytother Res, 14: 323-328. https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q.

Cahyo S, Kurniawati A, Faridah D, Ghulamahdi M. 2020. Growth, production, and bioactive content of several black cumin (Nigella sativa L.) accessions with different harvesting times in a D3 type climate regime. Journal of Tropical Crop Science, 7. https://doi.org/10.29244/jtcs.7.03.104-112.

Can M, Katar D, Katar N, Bagci M, Subasi I. 2021. Yield and fatty acid composition of black cumin (Nigella sativa L.) populations collected from regions under different ecological conditions. Appl Ecol Environ Res, 19: 1325-1336. http://dx.doi.org/10.15666/aeer/1902_13251336.

Caretta AMMA, Arfanuzzaman RBM, Morgan SMR, Kumar M. 2022. Water. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. 2009. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 11: 373-381. http://dx.doi.org/10.1017/9781009325844.006.

Ciesielska-Figlon K, Daca A, Kokotkiewicz A, Łuczkiewicz M, Zabiegała B, Witkowski JM, Lisowska KA. 2022. The influence of Nigella sativa essential oil on proliferation, activation, and apoptosis of human T lymphocytes in vitro. Biomed Pharmacother, 153: 113349. https://doi.org/10.1016/j.biopha.2022.113349.

Ghanavi Z, Velayati AA, Farnia P, Mollaei S, Ghanavi J. 2022. Volatile Oil Composition of Nigella sativa Cultivars Collected from Iran. Journal of Medicinal plants and By-product. https://doi.org/10.22092/JMPB.2022.357895.1455.

Golkar P, Nourbakhsh V. 2019. Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Industrial Crops and Products, 130: 170-178. https://doi.org/10.1016/j.indcrop.2018.12.074.

Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP. 2021. Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients, 13: 1784. https://doi.org/10.3390/nu13061784.

Haque M, Singh R, Nadeem A, Rasool S, Wani JA, Khan A, Ashafaq M, Makeen HA, Zehra U. 2022. Nigella sativa: A promise for industrial and agricultural economic growth, Black Seeds (Nigella Sativa). Elsevier, 439-460. https://doi.org/10.1016/B978-0-12-824462-3.00010-X.

Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA, Goh BH, Urbi Z, Sarker MMR, Ming LC. 2021. A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed Pharmacother, 143: 112182. https://doi.org/10.1016/j.biopha.2021.112182.

Hosseini SS, Nadjafi F, Asareh MH, Rezadoost H. 2018. Morphological and yield related traits, essential oil and oil production of different landraces of black cumin (Nigella sativa) in Iran. Scientia horticulturae, 233: 1-8. https://doi.org/10.1016/j.scienta.2018.01.038.

Hwang JR, Cartron AM, Khachemoune A. 2021. A review of Nigella sativa plant‐based therapy in dermatology. Int J Dermatol, 60: e493-e499. https://doi.org/10.1111/ijd.15615.

Inan M. 2020. Yarı Kurak Koşullarda Ekim Zamanlarının Çörekotu (Nigella sativa L.) Verim ve Verim Özelliklerine Etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 7: 32-37. https://doi.org/10.30910/turkjans.679898.

Iqbal MS, Ghafoor A, Akbar M, Akhtar S, Fatima S, Siddqui EH. 2019. Genetic variation and path analysis for yield and other agronomic traits in nigella sativa l. germplasm. Bangladesh Journal of Botany, 48: 521-527. https://doi.org/10.3329/bjb.v48i3.47913.

Iqbal N, Amber Zaidi S, Khan K, Farooq L, UR Rehman A, Mehmood H. 2021. Comparison of Antibacterial Efficacy of Fenugreek Seed Extract Rinse and Nigella Sativa Seed Extract Rinse against Streptococcus Mutant Colonies. https://doi.org/10.9734/jpri/2021/v33i50B33430.

Kalra N, Chakraborty D, Sharma A, Rai H, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal R. 2008. Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci, 82-88. (http://www.jstor.org/stable/24102032).

Kara N, Gürbüzer G, Biyikli M, Baydar H. 2021. Effect on Yield and Some Quality Characteristics of Seed Harvest at Different Stages of Maturity in Nigella sativa L. Journal of Agricultural Sciences, 27: 341-346. https://doi.org/10.15832/ankutbd.657045.

Kazemi M. 2015. Chemical composition and antioxidant properties of the essential oil of Nigella sativa L. Bangladesh Journal of Botany, 44: 111-116. https://doi.org/10.3329/bjb.v44i1.22732.

Khalid KA, Shedeed MR. 2016. Yield and chemical composition of Nigella sativa L. essential oil produced under kinetin treatments. Journal of Essential Oil Bearing Plants, 19: 1740-1746. https://doi.org/10.1080/0972060X.2016.1227727.

Mahajan M, Kuiry R, Pal PK. 2020. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants, 18: 100255. https://doi.org/10.1016/j.jarmap.2020.100255.

Mairech H, Lopez-Bernal A, Moriondo M, Dibari C, Regni L, Proietti P, Villalobos FJ, Testi L. 2021. Sustainability of olive growing in the Mediterranean area under future climate scenarios: Exploring the effects of intensification and deficit irrigation. European Journal of Agronomy, 129: 126319. https://doi.org/10.1016/j.eja.2021.126319.

Majeed A, Muhammad Z, Ahmad H, Hayat SSS, Inayat N, Siyyar S. 2021. Nigella sativa L.: Uses in traditional and contemporary medicines–An overview. Acta Ecologica Sinica, 41: 253-258. https://doi.org/10.1016/j.chnaes.2020.02.001.

Malik S, Singh A, Negi P, Kapoor VK. 2021. Thymoquinone: A small molecule from nature with high therapeutic potential. Drug Discovery Today, 26: 2716-2725. https://doi.org/10.1016/j.drudis.2021.07.013.

Mehmood A, Naveed K, Azeem K, Khan A, Ali N, Khan, SM. 2018. 10. Sowing time and nitrogen application methods impact on production traits of Kalonji (Nigella sativa L.). Pure and Applied Biology (PAB), 7: 476-485. http://dx.doi.org/10.19045/bspab.2018.70060.

Moniruzzaman M, Rahman M, Hossain M, Karim AS, Khaliq Q. 2015. Effect of sowing dates and genotypes on the yield of coriander (Coriandrum sativum L.). Bangladesh Journal of Agricultural Research, 40: 109-119. https://doi.org/10.3329/bjar.v40i1.23764.

Moradzadeh S, Siavash Moghaddam S, Rahimi A, Pourakbar L, El Enshasy HA, Sayyed R. 2021. Bio-Chemical Fertilizer Improves the Oil Yield, Fatty Acid Compositions, and Macro-Nutrient Contents in Nigella sativa L. Horticulturae, 7: 345. https://doi.org/10.3390/horticulturae7100345.

Murata N, Los DA. 1997. Membrane fluidity and temperature perception. Plant Physiol, 115: 875. http://dx.doi.org/10.1104/pp.115.3.875.

Ndirangu EG, Opiyo S, Ng’ang’a MW. 2020. Chemical composition and repellency of Nigella sativa L. seed essential oil against Anopheles gambiae sensu stricto. Trends in Phytochemical Research, 4: 77-84. https://tpr.shahrood.iau.ir/article_672458.html

Noël Nyemb J, Shaheen H, Wasef L, Nyamota R, Segueni N, Batiha GE-S. 2022. Black Cumin: A Review of its Pharmacological Effects and its Main Active Constituent. Pharmacogn Rev, 16. http://dx.doi.org/10.5530/phrev.2022.16.16

Ojueromi OO, Oboh G, Ademosun AO. 2022. Black seed (Nigella sativa): a favourable alternative therapy for inflammatory and immune system disorders. Inflammopharmacology, 30: 1623-1643. https://doi.org/10.1007/s10787-022-010356.

Ozer H, Coban F, Sahin U, Ors S. 2020. Response of black cumin (Nigella sativa L.) to deficit irrigation in a semi-arid region: Growth, yield, quality, and water productivity. Industrial crops and products, 144: 112048. https://doi.org/10.1016/j.indcrop.2019.112048.

Ozyazici G. 2020. Yield and quality of black cumin (Nigella sativa L.) according to leonardite and nitrogen doses. Appl Ecol Environ Res, 18: 7057-7075. http://dx.doi.org/10.15666/aeer/1805_70577075.

Palabiyik GA, Aytaç Z. 2018. Chemical composition of the fixed and essential oils of Nigella sativa L. from Turkey. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), 1: 19-27. (https://dergipark.org.tr/en/pub/cupmap/issue/ 38636/427413).

Rezaei-Chiyaneh E, Rahimi S, Rahimi A, Hadi H, Mahdavikia H. 2018. Response of seed yield and essential oil of black cumin (Nigella sativa L.) affected as foliar spraying of nano-fertilizers. Journal of Medicinal plants and By-product, 7: 33-40. https://doi.org/10.22092/JMPB.2018.116726.

Sabriu-Haxhijaha A, Popovska O, Mustafa Z. 2020. Thin-Layer Chromatography Analysis of Nigella sativa Essential Oil. J Hyg Eng, 31: 152-156. (https://keypublishing.org/jhed/wp-content/uploads/2020/11/13.-Full-paper-Arita-Sabriu-Haxhijaha.pdf).

Sadiq N, Subhani G, Fatima SA, Nadeem M, Zafer S, Mohsin M. 2021. Antidiabetic effect of Nigella sativa compared with metformin on blood glucose levels in streptozotocin induced diabetic albino wistar rats. Int J Basic Clin Pharmacol, 10: 361-367. https://dx.doi.org/10.18203/2319-2003.ijbcp20211016.

Sakdasri W, Sakulkittiyut B, Ngamprasertsith S, Sawangkeaw R. 2021. Volatile Compound Fingerprints of Black Cumin (Nigella sativa L.) Seed Oil Extracted by Supercritical Carbon Dioxide, Biology and Life Sciences Forum. MDPI, 31. https://doi.org/10.3390/Foods2021-11026.

Sarkar M, Khatun K, Mostarin T, Alam M, Siddika MJ, Saddam M, Hosen A, Banik N, Samad M. 2022. Effect of Macronutrients Combination with Plant Spacing on the Growth and Yield of Black Cumin (Nigella sativa L.). European Journal of Nutrition & Food Safety, 14: 15-27.

Sharangi A, Roychowdhury A. 2014. Phenology and yield of coriander as influenced by sowing dates and irrigation. The Bioscan, 9: 1513-1520. https://doi.org/10.9734/ ejnfs/2022/v14i830517.

Steponkus PL. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology, 35: 543-584. (https://www.annualreviews.org/ doi/pdf/10.1146/annurev.pp.35.060184.002551).

Toncer O, Kizil S. 2004. Effect of seed rate on agronomic and technologic characters of Nigella sativa L. Int J Agric Biol, 6: 529-532.

Varun V, Saravanan S, Bahadur V. 2020. Effect of NPK on plant growth, seed yield and seed quality of black cumin (Nigella sativa L.) cv. NRCSS (Ajmer). IJCS, 8: 897-900.

Wajs A, Bonikowski R, Kalemba D. 2008. Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour Fragrance J, 23: 126-132. https://doi.org/10.22271/chemi.2020.v8.i5m.10410. https://doi.org/10.1002/ffj.1866.

Yi T, Cho S-G, Yi Z, Pang X, Rodriguez M, Wang Y, Sethi G, Aggarwal BB, Liu M. 2008. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther, 7: 1789-1796. https://doi.org/ 10.1158/1535-7163.MCT-08-0124.

Zaid H, Silbermann M, Ben-Arye E, Saad B. 2012. Greco-Arab and Islamic herbal-derived anticancer modalities: From tradition to molecular mechanisms. Evid Based Complement Alternat Med, 2012. https://doi.org/10.1155/2012/349040.

Downloads

Published

27.12.2023

How to Cite

Barut, M., Cavdar, A. S., Tansı, L. S., & Karaman, Şengül. (2023). Yield and Quality Traits of Black Cumin (Nigella sativa L.) Genotypes in Response to the Different Sowing Dates . Turkish Journal of Agriculture - Food Science and Technology, 11(12), 2276–2287. https://doi.org/10.24925/turjaf.v11i12.2276-2287.6159

Issue

Section

Research Paper