Determination of Virulence Genes in Staphylococcus aureus Strains Isolated from Meat and Surface Samples of Different Animal Species

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i7.1238-1244.6090

Keywords:

S. aureus, Coa, Food-borne pathogen, Meat, Virulence genes, PCR

Abstract

Staphylococcus aureus (S. aureus) which is a crucial pathogen both for human and animals, one of the causative agent of food poisonings. In this study, significant virulence genes (coagulase (coa), clumping factor (clfA), and protein A (spa-IgG:spa-x)) in S. aureus strains isolated from meats of various animal species (beef, sheep, goat, and chicken) and food contact surfaces were characterized via molecular methods. With this aim, meat (n=400) and surface swap (50) samples from various premises were collected in Sivas province. Using phenotypic methods, samples were found to be coagulase positive S. aureus isolates. Coagulase-positive isolates were tested for virulence genes using a single or multiplex Polymerase Chain Reaction (PCR). In total, S. aureus was found in 110 (24.4%) of the 450 samples examined. S. aureus was detected 29%, 24%, 14%, 32% and 22% in cattle, sheep, goat and chicken meat samples as well as swab samples, respectively. coa, clfA, IgG binding region of spa, and X region coding genes were detected in all samples. Polymorphisms were observed in two of these four gen regions. In coa-PCR, all isolates had a single band formation with five distinct molecular lengths ranging from 500 to 1400 bp. In spa-X-PCR, all isolates had a single band formation with seven distinct molecular lengths ranging from 190 to 350 bp. As consequently, it is thought that detecting spa gene polymorphisms by coa-PCR in S. aureus isolates from meat and surfaces can be regarded as a good alternative to traditional methods, contributing to the development of effective staphylococcal infection control strategies and public health protection.

References

Aarestrup FM, Dangler CA, Sordillo LM. 1995. Prevalence of coagulase gene polymorphism in Staphylococcus aureus isolates causing bovine mastitis. Canadian Journal of Veterinary Research, 59: 124-128.

Aydin A, Sudagidan M, Muratoglu K. 2011. Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. International Journal of Food Microbiology, 148(2): 99-106. DOI: 10.1016/j.ijfoodmicro.2011.05.007.

Aydın A, Aksu H. Arun ÖÖ. 2007. Evaluation of hygienic properties of food handlers and equipment in food production and sales units. Medycyna Weterynaryjna, 63(9): 1067-1070.

Berry KA, Verhoef MT, Leonard AC, Cox G. 2022. Staphylococcus aureus adhesion to the host. Annals of the New York Academy of Sciences Journal, 1515(1): 75-96. DOI: 10.1111/nyas.14807.

Castro A, Silva J, Teixeira P. 2018. Staphylococcus aureus, a food pathogen: Virulence factors and antibiotic resistance. In: Holban AM, Grumezescu AM (editors). Foodborne Diseases, Academic Press, pp. 213-238, ISBN 978-0-12-811444-5.

Chen Q, Xie S. 2019. Genotypes, enterotoxin gene profiles, and antimicrobial resistance of Staphylococcus aureus associated with foodborne outbreaks in Hangzhou, China. Toxins, 11: 307. DOI: 10.3390/toxins11060307.

Dinges MM, Orwin PM, Schlievert PM. 2000. Exotoxins of Staphylococcus aureus. Clinical Microbiology Reviews, 13(1): 16-34.

EFSA/ECDC, 2022. European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA Journal 20(12): 7666, 273. Erişim Adresi: https://doi.org/10.2903/j.efsa.2022.7666, [Erişim Tarihi: 14 Ocak 2023].

Ercoli L, Gallina S, Nia Y, Auvray F, Primavilla S, Guidi F, ... Scuota S. 2017. Investigation of a staphylococcal food poisoning outbreak from a Chantilly cream dessert, in Umbria (Italy). Foodborne Pathogens and Disease, 14(7): 407-413. DOI: 10.1089/fpd.2016.2267.

Fox LK, Ferens WA, Bohach GA, Bayles KW, Davis WC. 2000. Stahylococcus aureus: Super Mastitis Pathogen. Proc. 39th Annual Meeting National Mastitis Council, Inc. Atlanta, GA. 98-103.

Frenay HM, Bunschoten AE, Schouls LM, van Leeuwen WJ, Vandenbroucke-Grauls CM, Verhoef J, Mooi FR. 1996. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of Protein A gene polymorphism. European Journal of Clinical Microbiology and Infectious Diseases, 15: 60-64.

Goh S, Byrne SK, Zhang JL, Chow AW. 1992. Molecular typing of Stahylococcus aureus on the basis of coagulase gene polymorphisms. Journal of Clinical Microbiolog, 30 (7): 1642-1645.

Gökdağ MO, Çiftci A. 2021. Antibiotic resistance and virulence gene profiles in Staphylococci ısolated from cattle with mastitis. Journal of Anatolian Environmental and Animal Sciences, 6(3): 395-402. DOI:10.35229/jaes.954156.

Jenul C, Horswill AR. 2018. Regulation of Staphylococcus aureus virulence. Microbiology Spectrum, 7(2): 7-2. DOI:10.1128/microbiolspec.GPP3-0031-2018.

ISO, 1999. International Organization for Standardization, (EN ISO 6888-1), Microbiology of food and animal feeding stuffs: Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). Part 1: Technique using Baird-Parker agar medium. ISO, Geneva, Switzerland.

Kadiroğlu P, Korel F, Ceylan Ç. 2019. Identification of Staphylococcus aureus cheese isolates with respect to virulence properties, genetic relatedness and antibiotic resistance profiles. Food and Health, 5(3): 149-159. DOI: 10.3153/FH19016.

Karahan M, Acik MN, Cetinkaya B. 2011. Investigation of virulence genes by PCR in Stapylococcus aureus isolates originated from subclinical bovine mastitis in Turkey. Pakistan Veterinary Journal, 31(3): 249-253.

Karahan M, Acik MN, Cetinkaya B. 2009. Investigation of toxin genes by polymerase chain reaction in Staphylococcus aureus strains isolated from bovine mastitis in Turkey. Foodborne Pathogens and Disease, 6 (8): 1029-1035. DOI: 10.1089/fpd.2009.0304.

Keyvan E, Ozdemir H. 2016. Sığır Karkaslarında Staphylococcus aureus’un varlığı, enterotoksijenik özellikleri ve antimikrobiyal dirençliliği. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 63: 17-23.

Latifpour M, Narimani T, Sadeghi A, Niakan M. 2022. Determination of virulence factors and resistance profile of methicillin-resistant Staphylococcus aureus strains among different types of spa, agr, and SCCmec. BioMed Research International, 2022, 1-8. DOI: 10.1155/2022/5863310.

Legnani P, Leoni E, Berveglieri M, Mirolo G, Alvaro N. 2004. Hygienic control of mass catering establishments, microbiological monitoring of food and equipment. Food Control, 15 (3): 205-211. DOI: 10.1016/S0956-7135(03)00048-3.

Li X, Zhang J, Zhang H, Shi X, Wang J, Li K, ... Zhao C. 2022. Genomic analysis, antibiotic resistance, and virulence of Staphylococcus aureus from food and food outbreaks: A potential public concern. International Journal of Food Microbiology, 16: 377, 109825. DOI: 10.1016/j.ijfoodmicro.2022.109825.

Li S, Wan, P, Zhao J, Zhou L, Zhang P, Fu C, ... Wang X. 2018. Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus from retail raw chicken meat. Journal of Food Protection, 81(4): 528-533. DOI: 10.4315/0362-028X.JFP-17-309.

Li Z. 2018. A review of Staphylococcus aureus and the emergence of drug-resistant problem. Advances in Microbiology, 8(1): 65-76. DOI: 10.4236/aim.2018.81006.

Maeda R, Kobayashi H, Higashidani M, Matsuhisa T, Sawa A, Miyake K, ... Yamanaka H. 2022. Molecular epidemiological and pharmaceutical studies of methicillin-resistant Staphylococcus aureus isolated at hospitals in Kure City, Japan. Access Microbiology, 4(2): 000319. doi: 10.1099/acmi.0.000319.

Naorem RS, Urban P, Goswami G, Fekete C. 2020. Characterization of methicillin-resistant Staphylococcus aureus through genomics approach. 3 Biotech, 10(9): 401. doi: 10.1007/s13205-020-02387-y.

Normannoa G, Correntea M, La Salandra G, Dambrosio A, Quaglia NC, Parisib A, Greco G, Bellacicco AL, Virgilioc S, Celano GV. 2007. Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. International Journal of Food Microbiology, 117(2): 219-222. DOI: 10.1016/j.ijfoodmicro.2007.04.006.

Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC. 2002. Veterinary Microbiology and Microbial Diseases. Wiley-Blackwell Science Ltd, Oxford.

Pereira V, Lopes C, Castro A, Silva J, Gibbs P, Teixeira, P. 2009. Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiolgy, 26(3): 278-282. DOI: 10.1016/j.fm.2008.12.008

Reinoso EB, El-Sayed A, Lammler C, Bogni C, Zschock M. 2008. Genotyping of Staphylococcus aureus isolated from humans, bovine subclinical mastitis and food samples in Argentina. Microbiological Research, 163(3): 314-322. DOI: 10.1016/j.micres.2006.05.013.

Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagace J. 2001. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. Journal of Clinical Microbiology, 39(7): 2584-2589. DOI: 10.1128/JCM.39.7.2584-2589.2001.

Sahin, S, Mogulkoc MN, Kalin R, Karahan M. 2020. Determination of the important toxin genes of Staphylococcus aureus isolated from meat samples, food handlers and food processing surfaces in Turkey. Israel Journal of Veterinary Medicine, 75(2): 42-49.

Saka E, Terzi Gulel G. 2018. Detection of enterotoxin genes and methicillin‐resistance in Staphylococcus aureus isolated from water buffalo milk and dairy products. Journal of Food Science, 83(6): 1716-1722. DOI: 10.1111/1750-3841.14172.

Salasıa SIO, Khusnan Z, Lämmler C., Zschöck M. 2004. Comparative studies on pheno and genotypic properties of Staphylococcus aureus isolated from bovine subclinical mastitis in Central Java in Indonesia and Hesse in Germany. Journal of Veterinary Science, 5(2): 103-109.

Schlegelova J, Dendis M, Benedik J, Babak V, Rysanek D. 2003. Staphylococcus aureus isolates from dairy cows and humans on a farm differ in coagulase genotype. Veterinary Microbiology, 92(4): 327-334. DOI: 10.1016/s0378-1135(02)00409-1.

Seki K, Sakurada J, Seong HK, Murai M, Tachi H, Ishii H, Masuda S. 1998. Occurrence of coagulase serotype among Staphylococcus aureus strains ısolated from healthy ındividuals special reference to correlation with size of protein-A gene. Microbiolgy and Immunology, 42(5): 407-409. DOI: 10.1111/j.1348-0421.1998.tb02302.x.

Stephan R, Annemuller C, Hassan AA, Lammler C. 2001. Characterization of enterotoxigenic Staphylococcus aureus strains isolated from bovine mastitis in North-East Switzerland. Veterinary Microbiology, 78(4): 373-382. DOI: 10.1016/s0378-1135(00)00341-2.

Thomas S, Liu W, Arora S, Ganesh V, Ko YP, Höök M. 2019. The complex fibrinogen interactions of the Staphylococcus aureus coagulases. Frontiers in Cellular and Infection Microbiology, 16; 9: 106. DOI: 10.3389/fcimb.2019.00106. eCollection 2019.

Tiwari HK, Sapkota D, Sen MR. 2008. Evaluation of different tests for detection of Staphylococcus aureus using coagulase (coa) gene PCR as the gold standard. Nepal Medical College Journal, 10(2): 129-131.

Wang D, Zhang L, Zhou X, He Y, Yong C, Shen M, ... Han B. 2016. Antimicrobial susceptibility, virulence genes, and randomly amplified polymorphic DNA analysis of Staphylococcus aureus recovered from bovine mastitis in Ningxia, China. Journal of Dairy Science, 99(12): 9560-9569. DOI: 10.3168/jds.2016-11625.

Published

31.07.2023

How to Cite

Karahan , M., Şahin, S., Moğulkoç , M. N., & Kalın, R. (2023). Determination of Virulence Genes in Staphylococcus aureus Strains Isolated from Meat and Surface Samples of Different Animal Species. Turkish Journal of Agriculture - Food Science and Technology, 11(7), 1238–1244. https://doi.org/10.24925/turjaf.v11i7.1238-1244.6090

Issue

Section

Research Paper