The Effect of Drying Methods on Drying and Thermo-Physical Properties of Apricot Kernels

Authors

DOI:

https://doi.org/10.24925/turjaf.v11i3.546-552.5954

Keywords:

Apricot kernels, Drying process , Color properties , Drying parameters , Thermal properties

Abstract

Apricot kernels are used in medicine as pain reliever, antimutagenic, anti-inflammatory and antimicrobial. In addition, the sweet ones of apricot kernels are consumed as snacks, and the bitter ones are used as raw materials in the cosmetics industry. It is important to determine the effect of the methods in the apricot kernel drying process, which is thought to affect the usage areas indirectly or directly. In this study, apricot kernels were dried in 3 different methods: in an oven (50°C, 60°C and 70°C), in a climate cabinet (%30 RH+50°C, %30 RH+60, ve %30 RH+70°C) and in the shade. When the drying times of the drying processes were examined, the longest drying was found in the shade drying method with 22 hours, and the shortest drying was determined in the oven at a drying temperature of 4 hours and 70°C. When the mathematical model data for all methods are examined; Midilli-Küçük model equation was estimated as the best model (R2:0.9999) among Page, Yağcıoğlu and Midilli-Küçük drying models. When the color values were examined, the methods closest to the color values of fresh apricot kernels were found at 70°C and 30% relative humidity in the air-conditioning cabinet and at 70°C in the oven. In terms of thermo-physical properties, the highest specific heat, thermal conductivity and thermal diffusivity values were determined in the shade drying method, while the highest specific mass values were determined in the samples that were dried in an oven at 60°C.

References

Adiletta G, Iannone G, Russo P, Patimo G, De Pasquale S, Di Matteo M. 2014.”Moisture migration by magnetic resonance imaging during eggplant drying: A preliminary study”. International Journal of Food Science and Technology, 49, 2602-2609.

Alemrajabi AA, Rezaee F, Mirhosseini M, Esehaghbeygi A. Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying proces. Drying Technology, 2012, 30:88–96.

Altuntaş E, Yıldız M. 2017. Some engineering properties of shelled and kernel tea (Camellia sinensis) seeds. African Journal of Traditional, Complementary and Alternative Medicines, 14(4): 39-45.

Anonim 2021. https://www.tuik.gov.tr/. (17 mart 2022)

Çelen İH, Çelen S, Moralar A, Buluş HN, Önler E. 2015. Mikrodalga bantlı kurutucuda patatesin kurutulabilirliğinin deneysel olarak incelenmesi. Electronic Journal of Vocational Colleges- Special Issue: The Latest Trends in Engineering, 5(4): 242- 287.

Gül-Dikme T, Dikme R, Aslan H. 2020. Kayısı çekirdeğinin insan sağlığına etkisi. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8(1), 175-188.

Huang SR, Yang JI, Lee YC. 2013. Interactions of heat and mass transfer in steam reheating of starchy foods. Journal of Food Engineering, 114: 174-182.

İzli N. 2016. Kayısının (Prunus armeniaca L.) konvektif, mikrodalga ve mikrodalga-konvektif yöntemleriyle kurutulması ve matematiksel modellenmesi. Anadolu Tarım Bilim. Derg. /Anadolu J Agr Sci 31, 375-384.

Karaaslan SN, Erdem T. 2009. Semizotunun mikrodalga ile kuruma incelenmesi ve uygun kuruma modelinin belirlenmesi. 25. Tarımsal Mekanizasyon Kongresi, 01-03 Ekim, Isparta.

Konuk D, Korel F. 2015. Kurutma sıcaklığının üzüm çekirdeklerinin toplam fenolik madde içeriği ve antioksidan kapasitesi üzerine etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(9), 404-407.

Krokida MK, Kiranoudis CT, Maroulis ZB, Marinos Kouris D. 2000. “Effect of pretreatment on color of dehydrated products”. Drying Technology, 18(6), 1239– 1250.

Maskan M (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering 44: 71-78.

McGuire RG 1992. Reporting of objective color measurements. HortScience, 27: 1254 - 1255.

Midilli A, Kucuk H, Yapar Z 2002. A new model for single later drying. Drying Technology, 20(7): 1503-1513.

Mujumdar AS 2000. Drying technology in agriculture and food sciences. Science Publishers, Inc, USA.

Özdoğru B, Şen F, Bilgin NA, Mısırlı A. Bazı sofralık kayısı çeşitlerinin depolanma sürecinde fiziksel ve biyokimyasal değişimlerinin belirlenmesi, Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(1):23–30

Page G.1949. Factors influencing the maximum rates of air drying shelled corn in thin layer. M.S. Thesis. Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.

Perusello C, Cocco V, Masson M, De Castilhos F. 2013. Determination of thermophysical properties of yacon (Smallanthus sonchifolius) to be used in a finite element simulation. International Journal of Heat and Mass Transfer, 67: 1163–1169. doi: 10.1016/j.ijheatmasstransfer.2013.09.004.

Plou E, Lopez-Malo A, Barbosa-Canovas GV, Welti-Chanes J, Swanson BG. 1999. Polyphenoloxidase activitiy and color of blanced and high hydrostatic pressure treated banana puree. Journal of Food Science, 64, 42-45.

Polatcı H, Taşova M, Saraçoğlu O. 2020. Armut (Pirus communis L.) posasının bazı kalite değerleri açısından uygun kurutma sıcaklığının belirlenmesi. Academic Platform Journal of Engineering and Science 8-3, 540-546.

Ramallo LA, Mascheroni RH. Quality evoluation of pineapple fruit during drying process, Food and Bioproducts Processing, 2012, 99:275-283.

Ruiz-Lopez II, Rodriquez-Jimenes GC, Garcia-Alvarado MA. 2004. Moisture and temperature evolution during food drying: effect of variable properties. Journal of Food Engineering, 63 (1): 117-124.

Şahin G, Altuntaş E. 2018. Kuş iğdesi meyvesinin fiziko-mekanik, renk ve kimyasal özellikleri. Journal of Gaziosmanpasa Scientific Research, 7(1): 1-11.

Şevik S 2013. Design experimental investigation and analysis of a solar drying system. Energy Conversion and Management, 68:227-234.

Taşova M, Polatcı H. 2021. Mikrodalga ve sıcak su ön işlemlerin şili (Capsicum annuum) biberinin kuruma modelleri, efektif difüzyon ve termo-fiziksel özelliklerine etkisi. Tarım Makinaları Bilimi Dergisi,17(3): 86-93.

Tzempelikos DA, Mitrakos D, Vouros AP, Bardakas AV, Filios AE, Margaris DP. 2015. Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. Journal of Food Engineering, 156: 10-21.

Veral E. 2019. Kesikli mikrodalga yöntemiyle şeftali ve nektarinin kurutulmasında kurutma parametrelerinin belirlenmesi. Yüksek Lisan Tezi, Fen Bilimleri Enstitüsü, Bursa Uludağ Üniversitesi, Biyosistem Mühendisliği Anabilim Dalı, Bursa.

Yagua CV, Moreira RG. 2011. Physical and thermal properties of potato chips during vacuum frying. Journal of Food Engineering, 104 (2): 272-283.

Yağcıoglu A 1999. Tarımsal Ürünleri Kurutma Tekniği. Ege Üniversitesi Ziraat Fakültesi yayınları No: 536. Bornova, İzmir.

Zhang QA, Song Y, Wang X, Zhao WQ, Fan XH. 2016. Mathematical modeling of debittered apricot (Prunus armeniaca L.) kernels during thin-layer drying. cyta – journal of food, 14(4), 509–517.

Published

30.03.2023

How to Cite

Aksüt, B., Polatcı, H., & Taşova, M. (2023). The Effect of Drying Methods on Drying and Thermo-Physical Properties of Apricot Kernels. Turkish Journal of Agriculture - Food Science and Technology, 11(3), 546–552. https://doi.org/10.24925/turjaf.v11i3.546-552.5954

Issue

Section

Research Paper

Most read articles by the same author(s)