Antibiotic Resistance in Probiotic Microorganisms




Probiotics, antibiotic resistance, LAB, microorganisms, safety


Probiotics are widely used in different forms of food or food supplements due to their health benefits. Probiotics consumption has seen an increase over the years. The main species used in probiotic products are Lactobacillus and Bifidobacterium, along with other species such as Bacillus. Generally, probiotic microorganisms are accepted as safe even though they are resistant to several antibiotics. Some probiotic strains with intrinsic antibiotic resistance may be beneficial in regenerating gut microbiota during antibiotic therapy. However, the antibiotic resistance genes identified in probiotic microorganisms may carry the risk of the transfer of resistance genes to pathogens, raising concerns. For instance, tetracycline resistance genes have often been detected in probiotic organisms Bifidobacterium and Lactobacillus. The antibiotic resistance genes carried on mobile genetic elements create reservoirs for pathogen resistance. This transfer of resistant genes to opportunistic pathogens and their spread may pose great danger. Hence, the purpose of this review was to assess the presence of antibiotic resistance in probiotic microorganisms and the potential transfer of the resistant genes to pathogens or commensal bacteria in the intestine.


Aarif TI, Weerasooriya P. 2019. Identification of the genus Bifidobacterium in commercially available yogurt drink products and determination of their antibiotic resistance genes. GARI Int. J. Multidisip. Res., 4(7): 109-120.

Abatenh E, Gizaw B, Tsegay Z, Tefera G, Aynalem E. 2018. Health benefits of probiotics. J. Bacteriol. Infec. Dis., 2(1): 8-27.

Abriouel H, Muñoz MDCC, Lerma LL, Montoro BP, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Gálvez A, Benomar N. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int., 78: 465-481. doi: 10.1016/j.foodres.2015.09.016

Altun GK, Erginkaya Z. 2021. Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. LWT–Food Sci. Technol., 15: 1-10. doi: 10.1016/j.lwt.2021.112233

Altuntaş S, Korukluoğlu M, Altuntaş V. 2017. Probiyotik Escherichia coli Suşu Nissle 1917. Pamukkale Univ. Muh. Bilim Derg., 23(7): 933-940. doi: 10.5505/pajes.2017.98475

Andriani D, Hasan PN, Utami T, Suroto DA, Wikandari R, Rahayu ES. 2021. Genotypic and phenotypic analyses of antibiotic resistance in İndonesian indigenous Lactobacillus probiotics. Appl. Food Biotechnol., 8(4): 267-274.

doi: 10.22037/afb.v8i4.34448

Anokyewaa MA, Amoah K, Li Y, Lu Y, Kuebutornye FKA, Asiedu B, Seidu I. 2021. Prevalence of virulence genes and antibiotic susceptibility of Bacillus used in commercial aquaculture probiotics in China. Aquac., 21: 1-8. doi: 10.1016/j.aqrep.2021.100784

Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol., 33(2): 282-291. doi: 10.1016/

Ashraf R, Shah NP. 2011. Review Article Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. Int. Food Res. J., 18(3): 837-853.

Baumgardner RM, Berreta A, Kopper JJ. 2021. Evaluation of commercial probiotics for antimicrobial resistance genes. Can. Vet. J., 62(4): 379-383.

Blandino G, Milazzo I, Fazio D. 2008. Antibiotic susceptibility of bacterial isolates from probiotic products available in Italy. Microb. Ecol. Health Dis., 20: 199-203. doi: 10.1080/08910600802408111

Botina SG, Poluektova EU, Glazova AA, Zakharevich NV, Koroban NV, Zinchenko VV, Babykin MM, Zhilenkova OG, Amerkhanova AM, Danilenko VN. 2011. Antibiotic resistance of potential probiotic bacteria of the genus Lactobacillus from human gastrointestinal microbiome. Microbiol., 80(2): 164-171. doi: 10.1134/S0026261711020032

Braїek OB, Smaoui S. 2019. Enterococci: between emerging pathogens

and potential probiotics. BioMed Res. Int., 2019: 1-13. doi: 10.1155/2019/5938210

Cerdó T, Ruíz A, Suárez A, Campoy C. 2017. Probiotic, prebiotic and brain development. Nutrients, 9(11): 1247. doi: 10.3390/nu9111247

Choudhary J, Dubey RC, Sengar G, Dheeman S. 2019. Evaluation of probiotic potential and safety assessment of Lactobacillus pentosus MMP4 isolated from mare’s lactation. Probiotics Antimicrob. Proteins, 11(2): 403-412. doi: 10.1007/s12602-018-9431-x

Cutting SM. 2011. Bacillus probiotics. Food Microbiol., 28(2): 214-220. doi: 10.1016/

Dai M, Lu J, Wang Y, Liu Z, Yuan Z. 2012. In vitro development and transfer of resistance to chlortetracycline in Bacillus subtilis. J. Microbiol., 50(5): 807-812. doi: 10.1007/s12275-012-1454-5

Das DJ, Shankar A, Johnson JB, Thomas S. 2020. Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition, 69: 1-6. doi: 10.1016/j.nut.2019.110567

de Souza BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALB. 2019. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob. Proteins, 11(2): 382-396. doi: 10.1007/s12602-018-9406-y

Dinçer E, Kıvanç M. 2021. In vitro evaluation of probiotic potential of Enterococcus faecium strains isolated from Turkish pastırma. Arch. Microbiol., 203: 2831-2841. doi: 10.1007/s00203-021-02273-y

Drago L, Rodighiero V, Mattina R, Toscano M, De Vecchi E. 2011. In vitro selection of antibiotic resistance in the probiotic strain Lactobacillus rhamnosus GG ATCC 53103. J. Chemother., 23(4): 211-215. doi: 10.1179/joc.2011.23.4.211

EFSA, 2021. Update of thelist of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020. Available form: [Accessed 20 February 2022]

Egervärn M, Lindmark H, Olsson J, Roos S. 2010. Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Antonie van Leeuwenhoek, 97(2): 189-200. doi: 10.1007/s10482–009–9401–0

Evivie SE, Huo GC, Igene JO, Bian X. 2017. Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food Nutr. Res., 61(1): 1318034. doi: 10.1080/16546628.2017.1318034

Fakruddin M, Hossain MN, Ahmed MM. 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement. Altern. Med., 17(1): 64. doi: 10.1186/s12906-017-1591-9

FAO/WHO, 2001. Health and nutritional properties of probiotics in food, including powder milk with live lactic acid bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (Cordoba, Argentina). Available from: [Accessed 10 February 2022]

Fatahi-Bafghi M, Naseri S, Alizehi A. 2022. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie Van Leeuwenhoek, 115(3): 375-389. doi: 10.1007/s10482-021-01703-7

Fernandez-Pacheco P, Arévalo-Villena M, Bevilacqua A, Corbo MR, Pérez AB. 2018. Probiotic characteristics in Saccharomyces cerevisiae strains: Properties for application in food industries. LWT-Food Sci. Technol., 97: 332-340. doi: 10.1016/j.lwt.2018.07.007

Flórez AB, Mayo B. 2017. Antibiotic resistance-susceptibility profiles of Streptococcus thermophilus isolated from raw milk and genome analysis of the genetic basis of acquired resistances. Front. Microbiol., 8 (2608): 1-12. doi: 10.3389/fmicb.2017.02608

Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A. 2011. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol., 151(2): 125–140. doi: 10.1016/j.ijfoodmicro.2011.08.014

Fraqueza MJ. 2015. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int. J. Food Microbiol., 212: 76-88. doi: 10.1016/j.ijfoodmicro. 2015.04.035

Fu B, Huang X, Ma J, Chen Q, Zhang Q, Yu P. 2022. Characterization of an inositol-producing Lactobacillus plantarum strain and the assessment of its probiotic potential and antibacterial activity. LWT-Food Sci. Tehnol., 153: 112553. doi: 10.1016/j.lwt.2021.112553

Fu X, Lyu L, Wang Y, Zhang Y, Guo X, Chen Q, Liu C. 2022. Safety assessment and probiotic characteristics of Enterococcus lactis JDM1. Microbial Pathogen., 163: 1-8. doi: 10.1016/j.micpath.2021.105380

Goldstein EJ, Tyrrell KL, Citron DM. 2015. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin. Infect. Dis., 60: 98-107. doi: 10.1093/cid/civ072

Gu SB, Zhao LN, Wu Y, Sun JR, Huang JF, Li DD. 2015. Potential probiotic attributes of a new strain of Bacillus coagulans CGMCC 9951 isolated from healthy piglet feces. World J. Microbiol. Biotechnol., 31(6): 851-863. doi: 10.1007/s11274-015-1838-x

Gueimonde M, Flórez AB, vanHoek AH, Stuer-Lauridsen B, Strøman P, de los Reyes-Gavilan CG, Margolles A. 2010. Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl. Environ. Microbiol., 76(10): 3364-3369. doi: 10.1128/AEM.03096-09

Gueimonde M, Sánchez B, de los-Reyes CG, Margolles A. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol., 4(202): 1-6. doi: 10.3389/fmicb.2013.00202

Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, Zhang H, Zhang W. 2017. Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. J. Food Sci., 82(3): 724-730. doi: 10.1111/1750–3841.13645

Guo L, Li T, Tang Y, Yang L, Huo G. 2016. Probiotic properties of Enterococcus strains isolated from traditional naturally fermented cream in China. Microb. Biotechnol., 9(6): 737-745. doi: 10.1111/1751-7915.12306

Gupta A, Tiwari SK. 2014. Probiotic potential of Lactobacillus plantarum LD1 isolated from batter of dosa, a South Indian fermented food. Probiotics Antimicrob. Proteins, 6(2): 73-81. doi: 10.1007/s12602-014-9158-2

Hamdy AA, Elattal NA, Amin MA, Ali AE, Mansour NM, Awad GE, Awad HM, Esawy MA. 2017. Possible correlation between levansucrase production and probiotic activity of Bacillus sp. isolated from honey and honeybee. World J. Microbiol., Biotechnol., 33(4): 69. doi: 10.1007/s11274-017-2231-8

Hammad AM, Shimamoto T. 2010. Toward a compatible probiotic-antibiotic combination therapy: assessment of antimicrobial resistance in the Japanese probiotics. J. Appl. Microbiol., 109(4): 1349-1360. doi: 10.1111/j.1365-2672.2010.04762.x

Han J, Chen D, Li S, Li X, Zhou WW, Zhang B, Jia Y. 2015. Antibiotic susceptibility of potentially probiotic Lactobacillus strains. Italian J. Food Sci., 27(3): 282-289. doi: 10.14674/1120-1770/ijfs.v270

Hanchi H, Mottawea W, Sebei K, Hammami R. 2018. The genus Enterococcus: Between probiotic potential and safety concerns—an update. Front. Microbiol., 9: 1791. doi: 10.3389/fmicb.2018.01791

Hoque MZ, Akter F, Hossain KM, Rahman MSM, Billah MM, Islam KMD. 2010. Isolation, identification and analysis of probiotic properties of Lactobacillus spp. from selective regional yoghurts. World J. Dairy Food Sci., 5(1): 39-46.

Huddleston JR. 2014. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect. Drug Resist., 7: 167-176. doi: 10.2147/IDR.S48820

Hummel AS, Hertel C, Holzapfel WH, Franz CM. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol., 73(3): 730-739. doi: 10.1128/AEM.02105-06

Imperial IC, Ibana JA. 2016. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edgedsword effect. Front. Microbiol., 7: 1983. doi: 10.3389/fmicb.2016.01983

Isa K, Oka K, Beauchamp N, Sato M, Wada K, Ohtani K, Nakanishi S, McCartney E, Tanaka M, Shimizu T, Kamiya S, Kruger C, Takahashi M. 2016. Safety assessment of the Clostridium butyricum MIYAIRI 588® probiotic strain, including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo. Hum. Exp. Toxicol., 35(8): 818-832. doi: 10.1177/0960327115607372

Jain P, Sharma P. 2012. Probiotics and their efficacy in improving oral health: a review. J. Appl. Pharm. Sci., 2(11): 151-163. doi: 10.7324/JAPS.2012.21128

Jeong DW, Jeong M, Lee JH. 2017. Antibiotic susceptibilities and characteristics of Bacillus licheniformis isolates from traditional Korean fermented soybean foods. LWT-Food Sci. Technol., 75: 565-568. doi: 10.1016/j.lwt.2016.10.001

Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM. 2013. Health Benefits of Probiotics: a review. ISRN Nutrition, 2013: 481651. doi: 10.5402/2013/481651

Kim YA, Keogh JB, Clifton PM. 2018. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev., 31(1): 35-51. doi: 10.1017/S095442241700018X

Klare I, Konstabel C, Werner G, Huys G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Muller-Bertling S, Witte W, Goossens H. 2007. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J. Antimicrob. Chemother., 59(5): 900-912. doi: 10.1093/jac/dkm035

Klarin B, Larsson A, Molin G, Jeppsson B. 2019. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. Microbiology Open, 8(2): e00642. doi: 10.1002/mbo3.642

Krupodorova T, Barshteyn V, Sevindik M. 2022. Antioxidant and antimicrobial potentials of mycelial extracts of Hohenbuehelia myxotricha grown in different liquid culture media. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 103(1): 19-28. doi: 10.5114/bta.2022.113912

Koçak Y, Çiftci A. 2020. Tavuk kökenli Enterococcus faecium ve Lactobacillus türlerinin probiyotik özelliklerinin araştırılması. J. Anatol. Environ. Animal Sci., 5(3): 356-365. doi: 10.35229/jaes.763996

Ku S, Yang S, Lee HH, Choe D, Johnston TV, Ji GE, Park MS. 2020. Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control, 117: 106985. doi: 10.1016/j.foodcont.2019.106985

Kumar A, Kumar D. 2015. Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33: 117-123. doi: 10.1016/j.anaerobe.2015.03.004

Kumari M, Patel HK, Kokkiligadda A, Bhushan B, Tomar SK. 2022. Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties. LWT-Food Sci. Technol., 154: 112827. doi: 10.1016/j.lwt.2021.112827

Lee NK, Kim WS, Paik HD. 2019. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol., 28(5): 1297–1305. doi: 10.1007/s10068-019-00691-9

Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. 2020. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Int., 136: 109571. doi: 10.1016/j.foodres.2020.109571

Lillo-Pérez S, Guerra-Valle M, Orellana-Palma P, Petzold G. 2021. Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT-Food Sci. Technol., 151: 112106. doi: 10.1016/j.lwt.2021.112106

Liu C, Zhang ZY, Dong K, Yuan JP, Guo XK. 2009. Antibiotic resistance of probiotic strains of lactic acid bacteria isolated from marketed foods and drugs. Biomed. Environ. Sci., 22: 401-412. doi: 10.1016/S0895-3988(10)60018-9

Mahmoudi M, Khomeiri M, Saeidi M, Davoodi H. 2021. Lactobacillus species from iranian jug cheese: identification and selection of probiotic based on safety and functional properties. Appl. Food Biotechnol., 8(1): 47-56. doi: 10.22037/afb.v8i1.29253

Markowiak P, Śliżewska K. 2017. Effects of Probiotics, Prebiotics and Synbiotics on human health. Nutrients, 9(9): 1021. doi: 10.3390/nu9091021

Mayrhofer S, Mair C, Kneifel W, Domig KJ. 2011. Susceptibility of Bifidobacteria of animal origin to selected antimicrobial agents. Chemother. Res. Pract., 2011: 989520. doi: 10.1155/2011/989520

Meral H, Korukluoğlu M. 2014. Laktik Asit Bakterilerinin Antibiyotik Direnç Mekanizmaları. Uludağ Üniv. Ziraat Fak. Derg., 28(2): 71-82.

Misra S, Pandey P, Mishra HH. 2021. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: a review. Trends Food Sci. Technol., 109: 340-351. doi: 10.1016/j.tifs.2021.01.039

Mohkam M, Rasoul-Amini S, Shokri D, Berenjian A, Rahimi F, Sadraeian M, Khalvatı B, Gholami A, Ghasemi Y. 2016. Characterization and in vitro probiotic assessment of potential indigenous Bacillus strains isolated from soil rhizosphere. Minerva Biotecnol., 28(1): 19-28.

Mukerji P, Roper JM, Stahl B, Smith AB, Burns F, Rae JC, Yeung N, Lyra A, Svärd L, Saarinen MT, Alhoniemi E, Ibarra A, Ouwehand AC. 2016. Safety evaluation of AB-LIFE(®) (Lactobacillus plantarum CECT 7527, 7528 and 7529): antibiotic resistance and 90-day repeated-dosestudy in rats. Food Chem. Toxicol., 92: 117-128. doi: 10.1016/j.fct.2016.03.018

Nami Y,Vaseghi Bakhshayesh R, Mohammadzadeh Jalaly H, Lotfi H, Eslami S, Hejazi MA. 2019. Probiotic properties of Enterococcus isolated from artisanal dairy products. Front. Microbiol., 10: 300. doi: 10.3389/fmicb.2019.00300

Nascimento LCS, Casarotti SN, Todorov SD, Penna ALB. 2019. Probiotic potential and safety of enterococci strains. Ann. Microbiol., 69: 241-252. doi: 10.1007/s13213-018-1412-5

Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J. 2011. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol., 62(3): 1081-1089. doi: 10.1007/s00284-010-9856-2

Neut C, Mahieux S, Dubreuil LJ. 2017. Antibiotic susceptibility of probiotic strains: Is it reasonable to combine probiotics with antibiotics? Méd. Mal. Infect., 47: 477-483. doi: 10.1016/j.medmal.2017.07.001

Nithya V, Halami PM. 2013. Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Ann. Microbiol., 63(1): 129-137.

Oruc O, Ceti̇n O, Darilmaz DO, Yüsekdag ZN. 2021. Determination of the biosafety of potential probiotic Enterococcus faecalis and Enterococcus faecium strains isolated from traditional white cheeses. LWT-Food Sci. Technol., 148: 111741. doi: 10.1016/j.lwt.2021.111741

Poloni V, Salvato L, Pereyra C, Oliveira A, Rosa C, Cavaglieri L, Keller KM. 2017. Bakery by-products-based feeds borne-Saccharomyces cerevisiae strains with probiotic and antimycotoxin effects plus antibiotic resistance properties for use in animal production. Food Chem. Toxicol., 107: 630-636. doi: 10.1016/j.fct.2017.02.040

Priyadarshana RMA, Daniel CR. 2019. Analysis of antibiotic resistance of the probiotic bacteria found in commercial food products. Vaccin. Res. Open J., 1(1): 90–97. doi: 10.17140/VROJ-4-115

Raeisi SN, Ghoddusi HB, Boll EJ, Farahmand N, Stuer-Lauridsen B, Johansen E, Sutherland JP, Ouoba LII. 2018. Antimicrobial susceptibility of bifidobacteria from probiotic milk products and determination of the genetic basis of tetracycline resistance in Enterococcus species after in vitro conjugation with Bifidobacterium animalis subsp. lactis. Food Control, 94: 205-211. doi: 10.1016/j.foodcont.2018.07.016

Raja BR, Arunachalam KD. 2011. Market potential for probiotic nutritional supplements in India. Afr. J. Bus. Manag., 5(14): 5418-5423. doi: 10.5897/AJBM11.494

Rozman V, Mohar-Lorbeg P, Accetto T, Bogovič Matijašić B. 2020. Characterization of antimicrobial resistance lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol., 314: 108388. doi: 10.1016/j.ijfoodmicro.2019.108388

Sabir F, Beyatli Y, Cokmus C, Onal-Darilmaz D. 2010. Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir. J. Food Sci., 75(9): M568-M573. doi: 10.1111/j.1750-3841.2010.01855.x

Samanta A, Bera P, Khatun M, Sinha C, Pal P, Lalee A, Mandal A. 2012. An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. J. Microbiol. Biotech. Res., 2(1): 178-189.

Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hörmannsperger G, Huys G, Levy DD, Lutgendorff F, Mack D, Phothirath P, Solano-Aguilar G, Vaughan E. 2010. Safety assessment of probiotics for human use. Gut Microbes, 1(3): 164-185. doi: 10.4161/gmic.1.3.12127

Saroj DB, Gupta AK. 2020. Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application. Int. J. Food Microbiol., 318: 108523. doi: 10.1016/j.ijfoodmicro.2020.108523

Sharma A, Lavania M, Singh R, Lal B. 2021. Identification and probiotic potential of lactic acid bacteria from camel milk. Saudi J. Biol. Sci., 28(3): 1622-1632. doi: 10.1016/j.sjbs.2020.11.062

Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. 2014. Antibiotic resistance among commercially available probiotics. Food Res. Int., 57: 176-195. doi: 10.1016/j.foodres.2014.01.025

Sharma P, Tomar SK, Sangwan V, Goswami P, Singh R. 2016. Antibiotic resistance of Lactobacillus sp. İsolated from commercial probiotic preparations. J. Food Saf., 36(1): 38-51. doi: 10.1111/jfs.12211

Shi Y, Zhai M, Li J, Li B. 2020. Evaluation of safety and probiotic properties of a strain of Enterococcus faecium isolated from chicken bile. J. Food Sci. Technol., 57(2): 578-587. doi: 10.1007/s13197-019-04089-7

Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S. 2012. Characterization of intestinal Lactobacillus reuteristrains as potential probiotics. Probiotics Antimicrob. Proteins, 4(1): 47-58. doi: 10.1007/s12602-012-9090-2

Sui L, Zhu X, Wu D, Ma T, Tuo Y, Jiang S, Qian F, Mu G. 2020. In vitro assessment of probiotic and functional properties of Bacillus coagulans T242. Food Biosci., 36: 100675. doi: 10.1016/j.fbio.2020.100675

Tiwari G, Tiwari R, Pandey S, Pandey P. 2012. Promising future of probiotics for human health: Current scenario. Chron. Young Sci., 3(1): 17-28. doi: 10.4103/2229-5186.94308

Toomey N, Bolton D, Fanning S. 2010. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res. Microbiol., 161(2): 127-135. doi: 10.1016/j.resmic.2009.12.010

Ünal Turhan E, Enginkaya Z. 2016. Probiyotik gıdalardan izole edilen laktik asit bakterilerinin antibiyotik dirençliliklerinin belirlenmesi. PAJES, 22(7): 620-624. doi: 10.5505/pajes.2016.87369

Varankovich NV, Nickerson MT, Korber DR. 2015. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Front. Microbiol., 6: 685. doi: 10.3389/fmicb.2015.00685

Wang X, Yang Y, Huycke MM. 2020. Risks associated with enterococci as probiotics. Food Res. Int., 129: 108788. doi: 10.1016/j.foodres.2019.108788

Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. 2022. Assessing the drug resistance profiles of oral probiotic lozenges. J. Oral Microbiol., 14(1): 2019992. doi: 10.1080/20002297.2021.2019992

Wang Z, Chai W, Burwinkel M, Twardziok S, Wrede P, Palissa C, Esch B, Schmidt MF. 2013. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza a virus in vitro. PloS ONE, 8(1): e53043. doi: 10.1371/journal.pone.0053043

Wei YX, Zhang ZY, Liu C, Malakar PK, Guo XK. 2012. Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. World J. Gastroenterol., 18(5): 479-488. doi: 10.3748/wig. v18.i5.479

WHO, 2014. Antimicrobial resistance: global report on surveillance. ISBN 978 92 4 156474 8. Available form: = 1 [Accessed 21 April 2022]

Wong A, Ngu DY, Dan LA, Ooi A, Lim RL. 2015. Detection of antibiotic resistance in probiotics of dietary supplements. Nutrition J., 14(95): 1-6. doi: 10.1186/s12937-015-0084-2

Xiao JZ, Takahashi S, Odamaki T, Yaeshima T, Iwatsuki K. 2010. Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. Biosci. Biotechnol. Biochem, 74(2): 336-342. doi: 10.1271/bbb.90659

Yamaguchi T, Miura Y, Matsumoto T. 2013. Antimicrobial susceptibility of Enterococcus strains used in clinical practice as probiotics. J. Infect. Chemother., 19(6): 1109-1115. doi: 10.1007/s10156-013-0633-6

Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol., 28(5): 1033-1040. doi: 10.1016/

Zhang L, Ma H, Kulyar MF, Pan H, Li K, Li A, Mo Q, Wang Y, Dong H, Bao Y, Li J. 2022. Complete genome analysis of Lactobacillus fermentum YLF016 and its probiotic characteristics. Microb. Pathog., 162: 105212. doi: 10.1016/j.micpath.2021.105212

Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. 2017. Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front. Microbiol., 8: 908. doi: 10.3389/fmicb.2017.00908

Zheng J, Wittouck S, Salvetti E, Franz MAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Peter Vandamme P, Walter J, Koichi Watanabe K, Wuyts S, Felis G, Gänzle MG, Lebeer S. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol., 70: 2782-2858. doi: 10.1099/ijsem.0.004107

Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, Ferchichi M, Connil N. 2018. Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal Tunisian meat “Dried Ossban”. Front. Microbiol., 9: 1685. doi: 10.3389/fmicb.2018.01685




How to Cite

Seyirt, S., Şanlıbaba, P., & Uymaz Tezel, B. (2023). Antibiotic Resistance in Probiotic Microorganisms . Turkish Journal of Agriculture - Food Science and Technology, 11(4), 746–757.



Review Articles

Most read articles by the same author(s)