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Sorbitol is an important source of abiotic stress that is used to increase osmolality in cell cultures. 

It increases the antioxidant enzymes of defense catalase (CAT), peroxidase (POD), and superoxide 

dismutase (SOD) in the stress state of cells. Sorbitol plays an important role in stimulating these 

enzymes in cells and increasing phenylalanine ammonium lyase (PAL) activity. The aim of this 

study was to apply increasing doses of sorbitol elicitor to cell suspension cultures to determine the 

changes in cell number, viability, dry weight, and camphor content. In vitro plantlets were obtained 

from plant seeds and stem segments of these plants were used as explant source. Cell cultures were 

established after callus formation. Then, 0 (control), 5, 25, and 50 g L-1 sorbitol was dissolved in 

distilled water and cultured. Samples were taken three times in total, starting from day 1 to day 3. 

The content of camphor was detected by gas chromatography-mass spectrometry (GC-MS). Cell 

number, viability,dry weight, and camphor content increased significantly with increasing doses of 

sorbitol compared to sampling times. Compared to the initial culture, the amount of camphor 

increased by 40% at the 5 g L-1 dose, 82% at the 25 g L-1 dose, and 154% at the 50 g L-1 dose. In A. 

gypsicola cell cultures, increasing doses of sorbitol have clearly demonstrated the secondary 

metabolite accumulation and its positive effect on cell growth. 
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Introduction 

The Achillea genus, a significant member of the 

Asteraceae family, boasts a global representation of over 

100 species. Within this genus, the essential oil harbors the 

camphor terpene, yielding medicinal benefits such as 

antimicrobial, antitussive, antinociceptive, antimutagenic, 

anticarcinogenic, and cardiovascular effects. Moreover, 

this versatile oil finds application in diverse industries 

including pesticide, cosmetics, plastics, and anti-rust 

coatings (Lin et al., 2007; Cheng et al., 2009; Sherkheli et 

al., 2009; Abdel-Rahman et al., 2015). 

A dominant source of the camphor compound is the 

Cinnamomum camphora tree, renowned as the camphor tree, 

thriving in the far eastern regions. This tree comprises around 

68% camphor in its chemical makeup (Frizzo et al., 2000). In 

contrast, the endemic Achillea gypsicola Hub, with its 

herbaceous form, exhibits a remarkable 61.8% camphor 

content (Açıkgöz, 2019). Studies demonstrate the Achillea 

genus's heightened camphor concentration compared to other 

medicinal and aromatic plants. Notable camphor contents 

among these species are: 0.6% (Achillea filipendulina), 1.3% 

(A. magnifica), 2.1% (A.millefolium), 3.17% (A. aleppica), 

5.9% (A. crithmifolia), 6.7% (A.santolina), 7.1% (A. 

tenuifolia), 8.6% (A.biebersteinii), 15.92% (A. tenuifolia), 

16.6% (A. wilhelmsii), 17.7% (A. micrantha), 22.8% (A. 

grandifolia), 23.21% (A. magnifica), 32.65% (A. cucullata), 

and 61.8%  (A. gypsicola) (Pavlović et al., 2008; Smelcerovic 

et al., 2010; Toncer et al., 2010; Khiyari et al., 2014; Almadiy 

et al., 2016; Sampietro et al., 2016; Ahmadi-Dastgerdi et al., 

2017; Ghasemi, 2017; Demirci et al., 2017; Açıkgöz, 2020b). 

Considering its growth cycle, A. gypsicola emerges as 

a notable camphor-rich species within the plant kingdom, 

even rivaling tree forms (Açıkgöz, 2017). Ecological 

conditions significantly influence plants, resulting in 

diverse effects on the quality and consistency of their 

secondary metabolites. Stress plays a pivotal role in 

shaping the chemical composition of medicinal and 

aromatic plants. Plant stress is categorized into two groups: 

biotic and abiotic. Abiotic stress encompasses non-

biological factors like physical, chemical, and hormonal 

influences. Physical stressors include light variations, UV 

http://creativecommons.org/licenses/by-nc/4.0/
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exposure, osmotic stress, drought, salinity, and thermal 

fluctuations. Osmotic stressors such as mannitol or sorbitol 

inhibit mineral absorption, slowing plant growth and 

development (Dodds and Roberts, 1985; Thompson et al., 

1986). Various studies employ substances like 

polyethylene glycol (PEG) or sorbitol to simulate artificial 

drought stress, as these substances reduce osmotic 

potential, creating water stress non-metabolized by plants 

(Rai et al., 2011; Bidabadi et al., 2012; Placide et al., 2012; 

Vanhove et al., 2012). 

Classical plant production methods and the extraction 

of secondary metabolites prove more resource-intensive 

and time-consuming compared to cell cultures. Hence, 

tissue culture techniques, particularly callus culture, 

emerge as popular methods for secondary metabolite 

production (Açıkgöz et al., 2018a; Açıkgöz et al., 2018b; 

Açıkgöz et al., 2019; Açıkgöz et al., 2022; Dağlioğlu et al., 

2022; Ebru et al., 2022; Açıkgöz et al., 2023). Callus 

culture efficiently generates products of specific quality 

and standards, enhances genetic diversity, introduces new 

compounds absent in the mother plant, optimizes space 

utilization, and utilizes minimal resources. This study 

investigates the impact of abiotic stress through sorbitol 

elicitation on callus cultures, focusing on changes in cell 

number, viability, dry weight, and camphor content. 

 

Materials and Methods 

 

Plant Material  

Seeds of A. gypsicola were procured from their native 

environment near the regions of Çorum, located in central 

Anatolia, Turkey. The Ministry of Food, Agriculture, and 

Livestock granted written permission for the collection. 

Validation of the species was carried out by Prof. Dr. Hayri 

Duman. The herbarium of the Field Crops Department at 

the Ordu University Faculty of Agriculture securely 

housed voucher plant specimens. Plant seeds were 

harvested by sampling from all plant clusters available in 

the area and were kept in storage until they were cleaned 

and planted in cork-stopped glass jars. The slope of the 

land where the plants were collected was 32.0–37.2%, the 

altitude 743–760 meters, and the aspect was determined as 

south-southwest (Figure 1). 

 

Cultivation of Callus and Elicitation Sorbitol 

In vitro plantlets derived from the collected seeds (pre-

treatments) (Açıkgöz and Kara, 2019) served as the source 

explants (Figure 2). The establishment of A. gypsicola cell 

suspension cultures was initiated using callus tissues 

obtained from stem segments. The cultures were sustained 

in B5 medium, fortified with 0.5 mg L-1 of 

benzylaminopurine and 0.5 mg L-1 of naphthalene acetic 

acid. These cultures were maintained in three 250-mL 

Erlenmeyer flasks, each containing 50 mL of liquid 

medium and 2.5 g of delicate green calluses. Incubation 

was carried out on a rotary shaker at 105 rpm, with the 

temperature set at 25 °C and a photoperiod of 16 hours 

light/8 hours dark. Three concentrations (5, 25, and 50 g L-

1) of sorbitol were tested, alongside the control groups 

receiving equivalent volumes of ethyl alcohol and distilled 

water, respectively. The cell suspension cultures, following 

consistent incubation conditions as mentioned earlier, were 

harvested at 8-, 24-, and 48-hours post-elicitation. This 

aimed to assess the influence of sorbitol on cell growth, as 

well as the accumulation of camphor compounds. After 

aseptic filtration using Whatman No. 3 filter paper and 

subsequent washing with deionized water, the filtered 

suspension cultures were stored in a deep freezer at -20 °C 

for subsequent extraction. For chemical analysis, the cell 

suspension cultures were homogenized using a mortar and 

pestle. The extraction followed the methodology outlined 

by Açıkgöz (2021). Specifically, 2 g of suspension on a 

fresh weight basis were mixed with 10 mL of 96% ethyl 

alcohol and homogenized for 2 minutes. This mixture was 

maintained at 45°C in a water bath for one night. 

Subsequently, the samples were placed on a rotary shaker 

at 4000 rpm for 5 minutes, and the resulting supernatant 

was collected in vials. The collected extracts were 

evaporated fully dry at 75 °C using a rotary evaporator. The 

dried residues were dissolved in 1 mL of methanol for 

subsequent chemical analysis (Açıkgöz, 2021). 

 

 
Figure 1. Image of the soil structure of A. gypsicola species  

(a), view of the plant in the field (b), image of seeds in the laboratory (c), image of pest control 

(d) and view of seeds under a binocular microscope (e) 
 

 
Figure 2. Image of the pre-treatments of A. gypsicola 

species  
(a) and images of in vitro plantlets germinating in the climate 

chamber in magenta pots (b, c, and d) 
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Assessment of Cell Dry Weight, Number, and Viability 

The progression of cell suspensions was assessed by 

gauging key parameters encompassing cell dry weight (g 

L–1), cell number, and cell viability (%). Cell dry weight 

was ascertained by carefully weighing the filtered cell 

samples, which had been exposed to a controlled 

temperature of 55 °C for 48 hours within an oven. This 

meticulous process allowed for the precise determination 

of cell mass. To evaluate cell viability, a Trypan Blue 

solution from Thermo Fisher Scientific, USA, was utilized 

in accordance with the methodology delineated by Laloue 

et al. (1980). This approach facilitated the differentiation 

between viable and non-viable cells based on dye 

exclusion. The quantification of cell numbers was carried 

out utilizing a Nageotte Counting Chamber (Hausser 

Scientific, USA), employing the procedure elucidated by 

Moroff et al. (1994). This technique ensured accurate 

assessment of cell population densities. 

 

Measurement of Camphor Content 

The camphor content quantification was accomplished 

through the utilization of a headspace gas 

chromatographic-mass spectrometer (GC-MS) system 

provided by Innovatech Labs, LLC, USA. This analytical 

setup was integrated with a Shimadzu QP2010 Ultra mass 

spectrometer and a Shimadzu AOC-5000 plus autosampler 

from Shimadzu Scientific Instruments, USA. The 

separation of compounds was achieved using a capillary 

column with a 30-meter length known as RTX-5M. The 

analysis commenced by introducing a camphor standard 

into the instrument. This enabled the determination of mass 

fragments and retention times associated with the camphor 

solution. To enhance the method's accuracy and precision, 

a selection was made of nine prominent ion peaks. A 

calibration curve was subsequently this data. Utilizing this 

curve, the camphor content within the samples was expressed 

in micrograms per gram (µg g–1). generated employing 

During the GC-MS analysis, specific experimental 

parameters were maintained as follows: helium served as 

the carrier gas, an injection temperature of 250 °C was 

applied, an injection volume of 0.5 mL was employed, 

ionization voltage was set to 70 eV, a temperature of 100°C 

was sustained, and a heating duration of 10 minutes was 

observed. This comprehensive analytical approach allowed 

for the precise determination of camphor content, 

facilitating a comprehensive assessment of its presence 

within the A. gypsicola cell suspension cultures under 

diverse elicitation conditions and time points. 

 

Statistical Analysis 

The entire experimental procedures were conducted in 

triplicate to ensure robustness and reliability. The 

experimental design adopted a fully randomized layout. 

The collected data underwent thorough analysis through a 

2-way analysis of variance (ANOVA) employing the 

Minitab 17 statistical software (Minitab, LLC, USA). To 

discern significant variations among means, the Tukey test 

was employed, and statistical significance was determined 

at a threshold of p<0.05. This analytical framework 

enabled the identification of noteworthy disparities and 

trends within the data. 

 

Results and Discussion 

 

Cell number, cell dry weight (g/L), and cell viability (%) 

The variance analysis of cell number indicated 

significant differences (p<0.01) among the sorbitol 

treatment doses and sampling times (Figure 3). 

Accordingly, the application of sorbitol at concentrations 

of 5 and 25 g L-1 significantly increased cell numbers 

compared to the initial culture; however, these two doses 

exhibited a similar effect on cell numbers. The average cell 

count, initially at 82.900 cells, increased to 84.390 with the 

5 g L-1 dose, but there was no further increase with the 25 

g L-1 dose. On the other hand, the highest average cell count 

was achieved with the 50 g L-1 sorbitol treatment, reaching 

90.010 cells. According to the relevant table, sampling 

times showed a significant effect on cell numbers. No 

statistically significant change in cell count was observed 

in samples taken on the first two days (84.865 and 85.350 

cells, respectively), while a significant increase was seen 

in samples taken on the third day (86.060 cells). 

 

 
Figure 3. Effects of sorbitol doses (g L-1) and sampling times (days) on cell number in A. gypsicola cell suspension 

cultures 
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Figure 4. Effects of sorbitol doses (g L-1) and sampling times (days) on cell dry weight (g L-1) in A. gypsicola cell 

suspension cultures 

 

 
Figure 5. Effects of sorbitol doses (g L-1) and sampling times (days) on camphor content (μg g-1) in A. gypsicola cell 

suspension cultures 

 

For cell dry weight (g L-1), variance analysis revealed 

significant differences between sorbitol doses (p<0.01) and 

sampling times (p<0.05). The initial culture's cell dry 

weight of 9.25 g L-1 increased to 9.34, 9.34, and 9.35 g L-1 

with the doses of 5, 25, and 50 g L-1, respectively. On the 

other hand, sampling times significantly influenced cell 

dry weight. The cell dry weight of 9.31 g L-1 in samples 

taken on the first day (8 hours after application) increased 

to 9.32 g L-1 on the second day and further to 9.32 g L-1 on 

the third day (Figure 4). 

Regarding cell viability (%), variance analysis 

indicated significant differences (p<0.05) among sorbitol 

doses and sampling times. The corresponding descriptive 

statistical values and Tukey test results, demonstrated that 

at concentrations of 5 and 25 g L-1 of sorbitol, there was a 

significant increase in viable cell counts compared to the 

initial culture. However, both doses had a similar effect on 

the increase in viable cell count. In contrast, the application 

of 50 g L-1sorbitol resulted in a decrease in the average 

viable cell count from 97.7% to 97.4% compared to the 

initial culture. Upon examining the relevant table, it is 

evident that sampling times had a significant effect on the 

average viable cell count. The viability, which was 97.6% 

on the first day, increased to 98.1% on the second day and 

then returned to 97.6% on the third day. 

Numerous researchers have documented the substantial 

efficacy of elicitor treatments in enhancing cell growth and 

the production of secondary metabolites. Factors such as 

the developmental stage of the cell culture (Namdeo, 2007; 

Kang et al., 2009), duration of elicitor exposure, and the 

specific elicitor employed play pivotal roles in optimizing 

the outcomes of these treatments (Kubeš et al., 2014; Nazir 

et al., 2019; Açıkgöz, 2020a). Prior investigations have 

demonstrated that, akin to our findings, sorbitol treatment 

can significantly stimulate cell growth at appropriate 

concentrations (Al-Khayri and Al-Bahrany, 2002; Wu and 

Shi, 2008; de Costa et al., 2013; Zaker et al., 2015; Singh 

et al., 2017). Nonetheless, there exist studies in which 

sorbitol treatment has exhibited inhibitory effects on cell 

growth, leading to reductions in cell dry weight (Patil et al., 

2013; Salehi et al., 2019; Ramulifho et al., 2019). 

Conversely, certain studies have emphasized the critical 

role of selecting suitable concentrations for maintaining 

cell viability during sorbitol treatments, highlighting that, 

as observed in this study, high concentrations of sorbitol 

may result in cell death (Hong et al., 2012; Valayil et al., 

2015; Sarmadi et al., 2019). 
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Camphor Content (µg g–1). 

According to the variance analysis conducted for the 

camphor content (µg g–1), while the difference between 

sorbitol doses was found to be significant (p<0.01), the 

variation among sampling times was deemed insignificant. 

The camphor content (µg g–1) exhibited a significantly 

proportional increase with rising sorbitol doses (Figure 4). 

The initial culture's camphor content, which was 0.264 µg 

g–1, increased by 40% to 0.370 µg g–1 at a dose of 5 g L-1, 

by 82% to 0.4810 µg g–1 at a dose of 25 g L-1, and by a 

remarkable 154% to 0.670 µg g–1 at a dose of 50 g L-1 

(Figure 5). In cell cultures, sorbitol, which is commonly 

used to elevate osmolality, serves as a significant source of 

abiotic stress. It is well known that under stress conditions, 

cells increase their defense-oriented antioxidant enzyme 

levels, including CAT, POD, and SOD (Sytar et al., 2013; 

Vuleta et al., 2016; Azarabadi et al., 2017). Previous 

studies have demonstrated that sorbitol plays a crucial role 

in stimulating these enzymes and enhancing PAL activity 

within cells (Wu et al., 2008). Particularly, PAL and 

similar enzymes are the most active in the production of 

secondary metabolites within cells. 

Numerous studies have reported that sorbitol elicitor 

promotes the accumulation of secondary metabolites and 

cell growth in cell cultures (Ling et al., 2008; Wu and Shi, 

2008; Zhao et al., 2010; Patil et al., 2013; Valayıl et al., 

2015; Zaker et al., 2015; Razavizadeh and Adabavazeh, 

2017; Sing et al., 2017; Yang et al., 2017). Consistent with 

these findings, our own research has shown that the doses 

of sorbitol used in our study positively stimulate secondary 

metabolite accumulation and cell growth in cell cultures, 

underscoring its significance as an osmotic stress inducer. 

Cells undergoing various growth stages in plant tissue 

culture systems exhibit distinct levels of mRNA and 

proteins, as indicated by Chong et al. (2005). This variance 

in cellular composition leads to differential responses to 

elicitor treatments, consequently influencing the 

accumulation of bioactive compounds, as demonstrated by 

Kang et al. (2009). As a result, precise calibration of the 

dosage and duration of elicitor treatments becomes crucial 

to effectively stimulate the generation of signaling 

molecules within the cells. Notably, specific 

concentrations of sorbitol employed in this investigation 

exhibited superior performance in enhancing the 

accumulation of camphor. 

 

Conclusion 

 

In this study, it has been determined for the first time 

that increasing doses of sorbitol applications in A. 

gypsicola cell suspension culture significantly enhance cell 

count, cell dry weight, and camphor content. The 

concentrations of sorbitol at 5 and 25 g L-1 were found to 

notably increase cell count compared to the initial culture, 

and cell dry weight increased in response to all three 

sorbitol doses. The initial camphor content of 0.264 μg g-1 

increased by 40% to 0.370 μg g-1 at the dose of 5 g L-1, by 

82% to 0.481 μg g-1 at the dose of 25 g L-1, and by an 

impressive 154% to 0.670 μg g-1 at the dose of 50 g L-1. 

When evaluating cell count and cell dry weight based on 

sampling times, no statistically significant changes were 

observed in cell count for samples taken within the first two 

days, but a significant increase was seen in samples taken 

on the third day. On the other hand, sampling times were 

found to significantly affect cell dry weight. It was 

determined that cell dry weight increased in samples taken 

on the first, second, and third days. This research has 

demonstrated that the sorbitol doses used positively 

stimulate secondary metabolite accumulation and cell 

growth, thus highlighting its importance as a source of 

osmotic stress in cell cultures. 
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