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The application of near-infrared reflectance spectroscopy (NIRS) and multivariate analysis for 

determining the seed germination rate of corn genotypes was assessed. Seed samples about 90 gr 

belong to commercial and local corn varieties at various ages were scanned with FT-NIRS on the 

reflectance mode from 1000 to 2500 nm wavelength. Filter paper technique showed the seed 

germination rates varied between 18-100% depending on the genotypes after 7 days at ±25°C. 

Partial least squares regression (PLSR) was applied to the reference values corresponding to the 

spectra. The best statistical results obtained from the pre-treatment combinations of Smooth 

Savitzky-Golay 9 Points (sg9), MSC full and normalization to unit length (nle). The regression 

coefficient of calibration (R2C) and prediction (R2P) of the created NIRS calibration via 

chemometric software NIRCal are realized 0.97 and 0.98 respectively for the property of corn 

germination rate. The standard error of both calibration (SEC) and prediction (SEP) were almost 

overlapping (4.17%, 4.61% respectively). The prediction accuracy of the final NIRS model was 

quite reasonable with the acceptable root mean standard error of prediction (RMSEP) as 8.88%. 

According to the residual predictive deviation (RPD) index (4.18), the accuracy of the NIRS model 

regarded as in the best category. Therefore, the NIRS model developed here is sufficient to predict 

the corn seed germination rate very fast and non-destructively without using any regents. 
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Introduction 

In terms of planning the agricultural production and the 

input outputs, it is an absolute necessity to know the seed 

viability. Seed viability is significantly under control by 

both ecological factors and internal seed biochemical 

metabolism. Long-term storage in unfavorable conditions 

is an important factor in decreasing viability. International 

seed testing association (ISTA) sorts the classical seed 

viability or germination tests as tetrazolium, conductivity, 

immunoassay tests and germination tests (Zhang et al., 

2018). However, all these techniques are destructive, 

requiring intensive labor and time. On the other hand, 

determining the physical properties of the seed may vary 

depending on the technicians performing the seed quality 

testing. In this case, the experience and the sensitivity of 

the technicians performing the assessments becoming 

more important. Therefore, there is a need for methods that 

are not dependent on the technician, laboratory conditions, 

sophisticated equipment and the chemicals (Rahman and 

Cho, 2016). New generation technologies developed for 

these purposes have become widespread in recent years. 

These technologies provide rapid, nondestructive, low-cost 

and environment-friendly measurements since due to lack 

of chemical waste. Techniques such as machine vision, 

spectroscopy, hyperspectral imaging, X-ray imaging, and 

thermal imaging can quickly specify the seed quality as 

well as its chemical quality, genetic purity, the quantity of 

disease and pest infestation or classification of the 

pathogens (Huang et al., 2015). Near infrared reflectance 

spectroscopy (NIRS) which is one of the spectroscopic 

technique offers advantages in determining the qualitative 

and quantitative properties of organic materials 

(Youngentob et al., 2012). It is sensitive enough to detect 

the changes in the free and structure-bounded components 

within a sample (Salgó and Gergely, 2012). The 

measurements are based on the correlation among the 

molecular vibration of an organic molecule and their 

interactions with the amount of absorbed and reflected near 

infrared radiation by the chemical structure (Jin et al., 

2017) containing OH, NH, CH and SH bounds within a 

sample (Qiu et al., 2018). The absorption bands are 
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characterized by very broad and overlapped peaks 

(Kosmowski and Worku, 2018), which inhibit the visual 

assessment and direct interpretation of the spectra (Büchi, 

2013). The chemometric software is used to find a 

statistical correlation between the spectra and the known 

biochemical values of the relevant sample to evaluate the 

entwined spectral data. Thus, a large number of 

biochemical parameters of a very small amount of a sample 

can be predicted in a very short time without any sample 

preparation (Burns, 2008). The potential of NIR 

spectroscopy to predict the qualitative and quantitative 

properties in food, pharmaceutical, and agricultural 

industries has been investigated (Fagan et al., 2011). 

Corn is the second most plentiful cereal grown for 

human consumption in worldwide. Knowledge of seed 

quality and germination rate is a prerequisite to ensure a 

successful crop establishment. At this stage, near-infrared 

spectroscopy is being a suitable technique for getting fast 

and cost-effective information. However, very few studies 

conducted with different species have tried to predict the 

seed viability and germination rate by using NIRS. 

Therefore, the main objective of this study was to exhibit 

the potential of using NIR spectroscopy combined with 

chemometrics to predict the seed germination rate of corn 

genotypes to reduce the need for wet chemical analysis and 

intensive labor and time for consumers and the seed 

industry.  

 

Materials and Methods 

 

Plant Material 

Commercial and local corn (Zea mays L.) seed samples 

(14 of 18 samples belong to the same genotype of various 

ages) were used as the research material (Table 1).  

Maize genotypes were sampled from a genetic 

collection stored for different periods from 3 months to 2 

years under uncontrolled room conditions. 

 

Table 1. Plant material and their origin 

N Corn varieties Origin 

1 Syperformer 1 Syngenta Turkey 

2 Syperformer 3 “” 

3 Syperformer 4 “” 

4 Syperformer 5 “” 

5 Syperformer 6 “” 

6 Syperformer 7 “” 

7 Syperformer 11 “” 

8 Syperformer 12 “” 

9 Syperformer 13 “” 

10 Syperformer 14 “” 

11 Syperformer 15 “” 

12 Syperformer 17 “” 

13 Syperformer 29 “” 

14 Syperformer 30 “” 

15 Colored popcorn Local (Çanakkale) 

16 Popcorn breed line Breed line 

17 Karadeniz Hard Seed  Local (Trabzon) 

18 Karadeniz Hard Seed 

(non-viable) 

Local (Trabzon) 

 

 

NIRS Analyses 

To obtain the reflectance spectra, the unprocessed seed 

samples were scanned by using a fourier-transform near 

infrared (FT-NIR) spectrophotometer (NIRFlex N-500, 

BÜCHI Labortechnik AG, Switzerland) before 

germination test. The spectral measurements were 

implemented in glass Petri dishes (100×20 mm) containing 

about 90 g of corn seed. Each spectrum was obtained with 

the electromagnetic scan on the reflectance mode from 

1000 to 2500 nm wavelength (4000-10000.cm-1) with a 

spectral resolution of 4 cm-1. All spectra were gathered 

after 32 scans with threefold repetition for each sample. 

Partial least squares regression (PLSR) which establishes a 

linear relationship between the spectral data and reference 

data (germination rate) obtained through a germination test 

was used to construct the calibration models. Principal 

components (PC) were used to create a multivariate 

discriminant model with the help of chemometric software 

NIRCal 5.5 (BÜCHI Labortechnik AG, Switzerland). 

Pre-treatments were employed to correct and reconstruct 

the spectrums during the data analysis. In the development 

of the NIRS models, 66% of the 54 spectra and the 

remaining 33% were used for the calibration and 

validation, respectively. 

 

Reference Data  

The germination rate (percentage) of the 

spectroscopically identified corn seed samples were 

measured according to ISTA (2008). Fifty seeds were 

placed on 3 layers of moist, non-toxic, germination paper 

(Anchor Paper Co., St. Paul, Minn.). The papers were 

rolled, placed in a plastic container (21.5 × 32.5 × 5.5cm), 

and incubated in an incubator at 25°C for 7 days in dark 

conditions. When the emerging radicle was at least 2 mm 

long that seed was considered as germinated. The seedling 

abnormalities at the final assessment were checked also. 

 

Statistics 

The performance of the calibration was expressed in 

terms of the coefficient of calibration and validation 

(R2
CAL, R2

VAL) and the standard errors of calibration (SEC) 

and prediction (SEP). In the validation step, the overall 

error between the predicted and reference values was 

assessed by using the root mean square error of prediction 

(RMSEP). Additionally, residual predictive deviation 

(RPD) which is the expression of the division of SEP to the 

standard deviation (Bellon-Maurel et al., 2010) was also 

calculated. 

 

Result and Discussion 

 

A significant variation was detected between corn 

genotypes in terms of germination rates after seven days 

(Figure 1).  

The effect of the seed storage period, in other words, 

seed age on the germination rate was clear. The 

germination rate was detected between 18% and 100 % 

depending on the genotypes.  

The genotype-specific spectrums obtained by the 

electromagnetic scanning of corn seed samples on the 

reflectance mode from 1000 to 2500 nm were 

differentiating from each other at different wavelength 

regions (Figure 2). 
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Figure 1. Germination rates (reference values) of corn genotypes after 7 days of incubation 

 

 
Figure 2. The sample specific original spectrums 

 

 
Figure 3. Statistically pretreated (sg9, mf and nle) spectrums 
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Non-viable seeds (0%) were obtained artificially by 

boiling and drying of the seeds to observe the differences 

of the non-viable seed spectrum. It is clearly visible on the 

bottom of Figure 2 with a differentiated spectrum.  

Differences were detected between the repetitions of 

the spectral scanning performed for each genotype. For this 

reason, the original spectra graph is presented in Figure 2 

as the average reflection of the three replicated spectral 

scans. Although not all wavelength regions in the 

spectrums contain information about seed germination, 

these regions were not excluded from the evaluation even 

being a noisy part and all wavelength regions were used for 

calibration. The non-viable sample spectra were eliminated 

from both calibration and validation sets during the NIRS 

model development process since it was determined as an 

outlier.  

As a result of displacement, regulation and the 

improvements of the original spectrums, 61.5% of the total 

spectrum was used for calibration and 28.5% for 

validation, unlike the initial programming. The rest of the 

10% spectrums were specified as outliers also. The spectral 

measurement can be affected by many factors leading to 

interference. So, the chemometric pretreatments are 

needed to optimize the performance of the model (Dupuy, 

2010). The pretreatments never change the wavelength of 

the original spectrums or the property-related spectra 

regions. Different statistical pretreatments or their 

combinations were applied in the current study to the 

original spectrums. In the final NIRS model the best 

accuracy was obtained from the pretreatment combinations 

of smooth savitzky-Golay 9 Points (sg9) + MSC full and 

(mf) + normalization to unit length (nle). As a result of the 

statistical improvements applied to the raw spectra, the 

reflection graph converted as in Figure 3.  

Figure 4 shows the relationship between the original 

versus predicted germination rates of corn genotypes in the 

final NIRS model. 

The best results in terms of higher R2 and lower 

prediction error of SEP were compared for the cross-

validation model of PLSR. The descriptive statistical data 

associated with the NIR-based calibration and validation 

are given in Table 2.  

In terms of the reliability of the NIRS model, the 

coefficient R2 is expected to as possible as close to one. 

The average bias between calibration and validation data 

sets for the property of the germination rate was quite low, 

consequently resulting in relatively normal linear 

distribution and rather high coefficients were observed on 

the plots (Figure 4). On the other hand, the parameters of 

SEC and SEP should be almost overlapped with each other 

for a good prediction performance. In these aspects, the 

NIRS model developed for corn seed germination with this 

study may be considered as reliable. Al-Amery et al. 

(2018) reported that the performance statistics of R2 and 

SEC of their NIRS model for the prediction of soybean 

seed germination rate as 0.57 and 11.42%. The authors 

separated the low and high germinating seed groups easily 

but had difficulty in distinguishing the genotypes from 

each other with their model. On the contrary, our results 

showed that the developed calibration could provide a 

realistic germination rate at a genotype level, with high 

accuracy. However, RMSEP is the most important and 

robust figure to judge the quality of a PLSR model since it 

shows the random and systematic errors in the prediction 

as different from SEP (Ferreira et al., 2013). The RMSEP 

is actualized as 8.88% in this study. According to this, the 

model needs to be improved. Because this percentage can 

lead to a slight deviation on the planting density in the field 

conditions. RPD is a non-dimensional statistic for the 

evaluation of an NIR spectroscopy calibration model 

(Esbensen et al., 2014). Williams (2001) emphasizes that 

the usage of RPD with R2 will be more meaningful for 

evaluating the efficiency of NIRS models. The RPD value 

in the PLS model was calculated as 4.18 for the 

germination rate. According to the classification of Chang 

et al. (2001) when the RPD>2 and measured vs predicted 

R2 was between 0.80 and 1.0 it means that the NIRS 

prediction as in the best category. Therefore, the model 

provided with this study is quite reasonable for the 

prediction of corn seed germination rate. 

 

Table 2. The performance statistics of the final NIRS 

model developed for the germination rates (%) of corn 

genotypes 

Property Germination rate (%) 

R2
CAL 0.97 

R2
VAL 0.98 

SEC (%) 4.17 

SEP (%) 4.61 

RMSEP (%) 8.88 

RPD 4.18 

Pred. Bias -1.2560 

 

 

 
Figure 4. Original vs NIRS predicted seed germination 

rates (%) of corn genotypes 
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aging (Walters, 1998; McDonald, 1999). Significant 

reductions in total protein (Kalpana and Madhava, 1995), 

unsaturated fatty acids, total lipid, and phospholipid 

content were detected with seed senescence (Thapliyal and 

Conner, 1997). As a result of these biochemical 

abnormalities, seed germination performance, speed and 

uniformity decrease (Kalpana and Madhava, 1995). 

Therefore, the NIRS chemometry generates a 

discrimination model by using these biochemical 

differentiation. The question is what the most effective 

parameter of this discrimination is. In general, the longer 

wavelength region had a larger weight and hence a larger 

influence on the discriminant model for any property 

(Tigabu and Odén, 2004). Esbensen (2009) stated that 

important reflectance bands have higher regression 

coefficients in a multivariate model. Therefore, the highest 

regression coefficients were found to be around the 

wavelengths of 1112 nm and 1231 nm (Figure 5). 

 

Table 3. The important reflectance bands and the related chemical products on the prediction of corn seed germination rates 

Wavelength (nm) Chemical bonds Product Example 

1112 nm 2x C-H str.+2x C-C str. Benzene, cyclopropane,  

1180 nm C-H str. second overtone CH3, HC=CH  

1231 nm C-H str. second overtone CH3, HC=CH 

1675 nm C-H str. first overtone cis-RCH=CHR, aromatic, CH3 

1901 nm O-H str.+2x C-O str. C=O str. second overtone Cellulose, starch , -CO2H 

 

 
Figure 5. The important wavebands for corn seed germination rates 

 

 
Figure 6. Score plots of germination rates using the FT-NIRS data 
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The important wavelengths on the prediction of 

germination rates, their chemical bonds, and the related 

products were explained in Table 3.  

Principal component analyses (PCA) transforms the 

large data sets into relatively few meaningful dimensions 

that represent the majority of the information present in the 

original data. The primary principal component (PC1) is 

used to reconstruct the spectra, and the second primary 

component (PC2) is used to decompose the models formed 

from the data set. According to the score plot of the PC1 

and PC2 (Figure 6), the PLSR model was able to 

differentiate corn genotypes very well by the first two-

component in respect to their germination rates.  

As shown in Figure 6 the PC1 and PC2 successfully 

differentiated the low and high germinating corn genotypes 

but failed to decompose the genotypes that are medium 

germinating (50-60%).  

Although the performance indicators of the developed 

NIRS model provided sufficient information about the 

calibration accuracy, the model should be re-tested with 

non-calibration samples (external) and the statistical 

relationship between the actual values and the NIRS 

predictions should be demonstrated. The lack of clear 

distribution in PCA also led to some deviations in the 

external validation test with a developed NIRS model 

(Figure 7). Despite these deviations, the regression 

coefficient (R2) between the laboratory and the predicted 

germination rates actualized as 0.79. This is a statistically 

acceptable coefficient and it shows that the accuracy of the 

developed calibration is quite high. 

 

 
 

 
Figure 7. Functionality of NIRS calibration developed for 

corn seed germination rate 

 

 

 

 

Conclusion 

 

As a conclusion, the developed NIRS model for the 

germination rates of corn genotypes is rather promising for 

very fast screening of a huge sample set without using any 

reagents. It is a preferable technique, especially for a very 

small amount of seed material since the spectral prediction 

method does not destroy the seed structural integrity. 

However, in order to increase the reliability of the NIRS 

model for different species and for commercial purposes, 

it is necessary to generate the original spectrum and 

reference values from very different species. 
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