Efficacy of Ammonization to Eliminate Common Mycotoxins

Veysel Doğan¹*, Armağan Hayırlı¹,²

¹Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240 Türkiye
²Corresponding author

Abstract

Mycotoxin is a worldwide problem threatening animal health and performance as well as public health. The objective of this experiment was to test the effect of ammonization on elimination of common mycotoxins in laying hen compound feed (CF) and dairy cattle total mixed ration (TMR). The CF for laying hens and TMR for dairy cows were contaminated with commonly occurring mycotoxins [aflatoxin B₁ (AFB₁), ochratoxin A (OTA), and zearalenone (ZEA)] at 25 times of their accepted legal limits (20 ppb, 200 ppb and 500 ppb, respectively). They were then subjected to ammonization with ammonium bicarbonate (NH₄HCO₃) at 50°C for 24 hours under the atmospheric pressure. Mycotoxin levels were analyzed using the LC-MS/MS technique. The elimination levels in CF and TMR were 53% and 54% for AFB₁; 31% and 31% for OTA and 22% and 22% for ZEA, respectively. In conclusion, ammonization was effective in destroying common mycotoxin, at an order of AFB₁ > OTA > ZEA.

Introduction

Mycotoxins are secondary metabolites that are produced by certain fungi such as Aspergillus, Penicillium and Fusarium, and that stimulate the toxic response in animals when ingested even at low concentrations (Bennet, 1987; Moss, 1991). The common mycotoxins that most capable to contaminate the feedstuffs and food materials among the thousands of mycotoxins are aflatoxins (AFB), ochratoxin A (OTA), and zearalenone (ZEA) (Ismaiel and Papenbrock, 2015). Mycotoxins deliver detrimental effects in animals including mortality, production loss, and feed conversion inefficacy as well as hepatotoxic, nephrotoxic, immunotoxic, cancerogenic, and genotoxic effects (Bitay et al., 1979; Smith et al., 1992; Dierheimer, 1998; Gabal and Azzam, 1998; Wild and Gong, 2012).

Different methods have been developed to eliminate the negative impacts of mycotoxins. These methods can be classified as: physical methods such as irradiation, heating, extraction, and adsorption (Jalili et al., 2010). Adsorptive agents are feasible and practical under the farm conditions. In some studies, mineral compounds as adsorptive agents demonstrate efficient adsorbing effects in vitro, in contrast, some of them are not able to adsorb mycotoxins efficiently in vivo (Jaynes et al., 2007). It was also shown that the adsorptive agents were selectively bound to mycotoxins (Gregorio et al., 2014). Chemical and physical properties of adsorbents and mycotoxins, such as surface phenomenon, size and distribution of the porous, total charge, mycotoxins polarity, shape, size and low surface area are another factor for the effectiveness of binders and adsorbents for mycotoxins (Huwing et al., 2001). Biological methods include fungi (i.e., nontoxigenic Aspergillus spp.), bacteria (i.e., Actinomycetales spp.), and enzymes (i.e., laccase and manganese peroxidase) (Alberts et al., 2009; Wu et al., 2009; Wang et al., 2011; Kong et al., 2012). There are some limitation factors on the elimination of mycotoxins such as required long incubation periods for effective detoxification and complicated extraction procedures to obtain the active extracts (Ji et al., 2016).}

This work is licensed under Creative Commons Attribution 4.0 International License

1982
hydrolyze of the lactone ring present in their structure, through the binding of chlorine to furan ring and breaking down the double bonds in the lactone ring (Swenson, 1981). Ammonization occurs by two step chemical reactions: first, hydrolysis of the lactone rings and then decarboxylation (Lee et al., 1974; Grove et al., 1984). In ammonization, the lactone ring in the aflatoxins is the main target and opened by aminolysis and ammonia forms an amide by binding to the carboxyl terminal end, due to in the acidic nature, of this group. In the latter step, remains a β-keto acid after the removing of ammonia from the amide moiety. Presence of the H2O, H+ or OH− ions in the environment or presence of the heat cause to the decarboxylation of the β-keto acid and to remove the CO2 from the structure. After this step, formed new structure is called aflatoxin D1, which is 2000-20000 times less toxic than AFB1 (Hawortha et al., 1989).

The objective of this experiment was to test the efficacy of the ammonization procedure on destruction of commonly occurring mycotoxins (AFB1, OTA, and ZEA) in laying hen compound feed (CF) and dairy cattle total mixed ration (TMR).

Material and Methods

Samples, Contamination, and Ammonization

Commercial compound feed for laying hens (CF) (11.09 MJ/kg, 17% crude protein, 4% crude fiber, 3.4% crude fat and 12.5% crude ash) and total mixed ratio for dairy cattle (TMR) (19.4% grass hay, 19.2% barley silage, 24.0% corn silage, 9.7% rolled barley grain, 27.8% protein-energy concentrate on a dry matter basis) were dried at 60°C for three days and then ground to pass 1 mm screen. The mycotoxins were purchased (A6636: 1 mg aflatoxin B1, Z2125: 25 mg zearalenone, and 32937: 5 mg ochratoxin A, Sigma-Aldrich, Taufkirchen, Germany).

The feedstuffs were subjected to contamination of mycotoxins at 25-fold of the legal limits ([AFB1, OTA and ZEA are 20 µg/kg, 200 µg/kg and 500 µg/kg, respectively (Amtsblatt der Europäischen Union, 2006) (Table 1). The mycotoxins at the contamination level were suspended within 1.500 L distilled water. The feeds were split into two groups: the control group and the contaminated group (800 g).

After spraying mycotoxin cocktail in plastic containers, the contaminated feeds were subjected to the drying process at 60°C for three days. The feedstuffs were shaken every three hours during the drying process to achieve homogeneous contamination. Contaminated CF and TMR were split into two groups: the contaminated group and the contaminated plus ammonized group (400 g). The ammonization process was applied at the dose of 10 g/kg NH4HCO3 (Toxifarm Dry, Farmavet International, Manisa, Türkiye). While the ammonization at 50°C for 24 hours in oven, the lids of plastic containers were slightly secured in order to prevent the gas escape as NH4HCO3 gasifies as soon as contact with air and heat. The containers were shaken every three hours during the ammonization process.

The feeds of the control, contaminated and ammoniated groups were subsampled 8 bags, each weighing 50 g for analyses of mycotoxins using the liquid chromatography/mass spectrometry (LC/MS 6420, Agilent, Santa Clara, CA).

Before analyses of mycotoxins, the feed samples were extracted by weighing 2 g feed samples in the falcon tube and adding 10 ml extraction-1 solution [79% acetonitrile (HPLC grade), 20% distilled water and 1% formic acid (HPLC grade)]. The samples were centrifuged for 5 min at 4500 rpm after stirring process at 250-300 rpm for one hour. At the end of the centrifugation, 1 ml extraction-2 solution [79% distilled water, 20% acetonitrile (HPLC grade) and 1% formic acid (HPLC grade)] were added to 1 ml supernatant (this process ensured both the solvation and 10 times distillation of mycotoxins) and filtered through 0.45 µm filter and transposed to another falcon tube. The obtained specimens were analyzed by taking into the vials.

Statistics

The data were subjected to one-way ANOVA using the PROC. GLM procedure (SAS, Statistical Analysis System, Version 9.0, Cary, NC, 2002). The linear model was as follows: Yijk = μ + Gi + eijk, where Y: response variable, μ: population mean, G: group (i: control, contaminated and ammoniated), and e: experimental error (i: in group, j: in sample). Difference between-groups was evaluated with the LSD option. Statistical difference among groups was considered significant at p<0.05 and the group values were presented as least square mean ± standard error.

Results

Intra- and Inter-Assay Variation

When the control feed groups were considered, the intra-assay variations were 13.5%, 39.0% and 45.5% and inter-assay variations were 16.7%, 63.8% and 46.0% for AFB, OTA, and ZEA, respectively.

Table 1. Effects of the ammonization procedure on mycotoxin levels (µg/kg) in laying hen compound feed (CF) and dairy cow total mixed ration (TMR) upon contamination.

<table>
<thead>
<tr>
<th>Feed</th>
<th>Groups*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Laying Hen CF</td>
<td>Dairy Cow TMR</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>Contaminated</td>
<td>Ammonized</td>
</tr>
<tr>
<td>AFB1</td>
<td>1.61±0.05c</td>
<td>324.71±2.89a</td>
<td>152.73±1.36b</td>
</tr>
<tr>
<td>OTA</td>
<td>5.47±0.51c</td>
<td>1831.61±51.28a</td>
<td>1267.27±29.11b</td>
</tr>
<tr>
<td>ZEA</td>
<td>4.73±1.58c</td>
<td>3045.20±94.68a</td>
<td>2383.82±135.13b</td>
</tr>
<tr>
<td>AFB1</td>
<td>1.89±0.12c</td>
<td>146.59±2.59a</td>
<td>67.95±1.64b</td>
</tr>
<tr>
<td>OTA</td>
<td>12.28±2.24c</td>
<td>877.65±20.36a</td>
<td>608.04±18.05b</td>
</tr>
<tr>
<td>ZEA</td>
<td>2.44±1.10c</td>
<td>2827.88±233.81a</td>
<td>2192.87±147.09b</td>
</tr>
</tbody>
</table>

The different superscripts among the groups differ (P<0.05). The feedstuffs were subjected to contamination of mycotoxins at 25-fold of the legal limits (aflatoxin (AFB), ochratoxin A (OTA), and zearalolone (ZEA) are 20, 200, and 500 µg/kg, respectively (Amtsblatt der Europäischen Union, 2006). The ammonization process was applied at the dose of 10 g/kg NH4HCO3 (Toxifarm Dry, Farmavet International, Manisa, Türkiye).
Contamination and Ammoniation

The mycotoxin levels in the laying hen CF and dairy cow TMR when they were not contaminated (control), contaminated with mycotoxins about 25-fold of the legal limits (contaminated), and ammoniated after contamination were summarized in Table 1. The levels of AFB₁, OTA and ZEA were much lower than the legal limits determined by the international standards (20, 200, and 500 µg/kg, respectively), which were 1.61, 5.47, and 4.73 µg/kg, respectively (Table 1). Experimental contamination for AFB₁, OTA and ZEA were achieved by 65%, 37%, and 24%, respectively, of the intention, which were 325 (500), 1832 (5000), and 3045 (12500) µg/kg, respectively (Table 1). Significant decreases in concentration of AFB₁ (-53%), OTA (-31%) and ZEA (-22%) were obtained in the contaminated laying hen CF after the ammoniation process. However, the ammoniation process was not fully successful to decrease the mycotoxin levels below to the legal limits.

The levels of AFB₁, OTA and ZEA in the control dairy cow TMR were much lower than the legal limits determined by the international standards, which were 1.89 (20), 12.28 (200), and 2.44 (500 µg/kg, respectively (Table 1). Experimental contamination for AFB₁, OTA and ZEA were achieved by 29%, 18%, and 23%, respectively, of the intention, which were 147 (500), 878 (5000), and 2828 (12500) µg/kg, respectively (Table 1). Significant decreases in concentration of AFB₁ (-54%), OTA (-31%), and ZEA (-22%) were obtained in the contaminated dairy cow TMR after the ammoniation process. However, the ammoniation process was not fully successful to decrease the mycotoxin levels below to the legal limits.

Discussion

Studies involving the ammoniation process at various concentrations and different temperatures under the pressure in a laboratory setting for destructions of AFs and OTA are available (Brekke et al., 1979, 1977a, 1977b; Jensen et al., 1977; Bagley, 1979; Norred, 1982; Price et al., 1982; Lee et al., 1984; Koltun, 1986; Norred et al., 1991; Kwon et al., 1997). The data obtained from the LC-MS/MS analysis in our experimental design, the water attached to the feedstuffs was evaporated at 60°C for 3 days. This process creates DM > 88%. Up to 5% ammonium concentration requires 10-20% moisture content in the feedstuffs to provide an effective aflatoxin degradation depending on the temperature and time (Samarajeewa et al., 1990). The total water, both releasing from the NH₄HCO₃ and attached to the feedstuffs, is not sufficient for hydroxylation reaction in the lactone ring.

In the ammoniation process, the lactone ring in the mycotoxins is opened by aminolysis and ammonia forms an amide by binding to the carboxyl terminal end, due to the acidic nature of this group. The opening of the lactone ring is a reversible reaction in the acidic environment (Piva et al., 1995). In the latter step, remain a β-keto acid after the removing of ammonia from the amide moiety. Presence of the CO₂ from the structure. In addition, thermal decomposition of NH₄HCO₃ between 35-60°C
releases NH$_3$, H$_2$O$_2$, and CO$_2$ to the environment. In the present case, the CO$_2$, released both from NH$_4$HCO$_3$ and mycotoxins, may acidify the environment. This reaction may convert the formed metabolite to the original state.

In conclusion, mycotoxin degradation by ammonization method was confirmed. However, the degradation rate was not satisfactory, reaching below their legal limits. Future studies should perform different doses at different temperatures while identifying new products occurring in addition to nutrients in case they are lost and/or denatured.

References

