Systemic Meta-analysis of Mastitis Prevalence in Dairy Cattle and Goat of Bangladesh

Mahamudul Hasan1,a,*

1Faculty of Veterinary, Animal and Biomedical Sciences (SAU), Sylhet Agricultural University, Sylhet-3100, Bangladesh
*Corresponding author

ARTICLE INFO

Research Article

Received : 17/12/2020
Accepted : 01/03/2021

Keywords: Mastitis Prevalence Bangladesh Meta-analysis Ruminant

ABSTRACT

Bovine and caprine mastitis is a dreadful bacterial disease that drastically lowers milk production, and presently it is spreading as an endemic pathogen throughout the world, including Bangladesh. Moreover, mastitis is the main impediment to Bangladesh’s tremendously rising milk-related industry and general livestock economy. Therefore, the aim of this study is to demonstrate the overall prevalence of clinical and sub-clinical mastitis in both dairy cows and goats. It is the foremost meta-analysis study regarding mastitis prevalence in Bangladesh and the study gathered the articles from the electronic database on the topic bovine and caprine mastitis published between January 2005 and November 2020. Finally, 33 articles were selected for estimating the overall prevalence rate of mastitis in ruminant (cow and goat) via random effect model estimation. Analyzing the result, the study found 43.0% (95% CI: 37.0 - 50.0%) and 31.0% (95% CI: 15.0 - 47.0%) prevalence rate in dairy cattle and goat. Statistically, the occurrence rate in Bangladesh is significantly higher than other countries. Although many studies showed the seroprevalence across different districts, this study demonstrates the aggregate incidence rates across Bangladesh as a whole. This paper may also serve as a reference point for the implementation of any control strategy of mastitis in Bangladesh.

Introduction

Mastitis becomes one of the most infectious complications in milking animal, including cow and goat worldwide. It is perceived to be an economically terrible disease that impedes the milk sector’s growing demand (Bangar et al., 2014). Besides, mastitis is a mortifying dairy animal’s disease characterized by significantly reduces milk production, declines in the quality and quantity of milk, and production costs (Hogeveen et al., 2011). There are two primary sorts of mastitis (clinical and sub-clinical) characterized by the inflammation of the udder and teats (Ruegg, 2017; Taponen et al., 2017).

Swelling of the udder and persistence of the flakes in milk is a familiar typical indication of clinical mastitis (K.P. Suresh et al., 2017). In contrast, the diagnosis of subclinical mastitis is difficult due to the lack of obvious clinical signs that exist longer effectively in herds and are correlated with higher loss (Abrahmsën et al., 2014; Ndahetuye et al., 2019; Zeryehun and Abera, 2017).

Previously, the prevalence of mastitis was recorded in many studies in Bangladesh and reported a fluctuate rational result. Some studies showed a higher prevalence, and the rest studies indicated a lower prevalence percentage. Perhaps, this variation occurs due to the research duration and region, lactation period, animal breed, sample size, sampling method, and farm management practice (K.P. Suresh et al., 2017). As Bangladesh is a developing country with a huge population and the majority of the people live in the rural area depend on livestock besides agricultural farming. Mainly, Cattle and goats are the main domestic animal in Bangladesh (Hasib and Chowdhury, 2020; S. Rahman, 2018). Meanwhile, mastitis in the bovine and caprine population is becoming an impediment for the dairy sector as well as farmer livelihood. To overcome this disease, the strategic managerial initiative could play an important role in lessening further outbreaks. Therefore, gathering information about the prevalence of the previous study is...
essential for guiding the policymaker. Thus, this study provides a vivid impression of the overall pooled prevalence estimate of mastitis for both dairy cattle and goats via systemic review and meta-analysis method.

Materials and Methods

Methods
The research was performed in compliance with the directives supported for review and meta-analysis by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (Ahaduzzaman, 2019; Hasib and Chowdhury, 2020).

Literature Search
Conducting a study, the term related to mastitis in Bangladesh was searched in Google Scholar, PubMed, Science Direct, and local Bangladeshi journals. Mastitis, prevalence, and Bangladesh were the core terms used in the process of electronic search. Besides, the terms, including bovine, caprine, clinical, and sub-clinical were also included in the search procedure. Only, the articles of the English language were aggregated for leading this study. Searching the papers was done from the 5th of December to the 7th of December, 2020.

Data Extraction
The data, including author, study year, study place, study duration, total sample, positive cases, type of mastitis, and the species of animal were extracted in an excel spreadsheet. Finally, data obtained from 7011 dairy cows and 3866 dairy goats were selected for analyzing this study.

Selection of Study
The studies were selected based on five objectives for including in the meta-analysis, including (1) published in the English language, (2) cross-sectional, (3) included the number of total and affected animals, (4) sampling based on the individual animal, (5) published between January 2005 to November 2020, and, (6) diagnosed by (California mastitis test) CMT or other equivalent test and clinical examination. Those studies were omitted, which proved to fail to fulfill the described objectives.

Statistical Analysis
Total sample size and frequency of positive case (calculated average positive sample in case of the individual result of more than two tests) for each study were inserted in Microsoft office Excel 2019, and variance of the studies was calculated (Neyeloff et al., 2012). Following this, Jamovi 1.2.27 software was used for further calculation including, a 95% CI, heterogeneity test, and chi-square test for knowing the significance of the variance among estimates (P<0.001).

After getting some of the basic requirements, the overall meta-analysis was visualized in the forest plot (random model) along with the funnel plot. In the forest plot, a horizontal line denotes the result of a study. In contrast, the 95% confidence interval (CI) and the point estimate of each study are represented by the length of the line and the black box (Getanen and Gebremedhlin, 2017). Moreover, the weight of each study is proportional to the zone of the black box. Both Figure 2 and Figure 4 represent the forest plot, where the study and author name present in the left-side column. Similarly, the first column of the right-side remarks weight, the second one represents proportion combined with the range of 95% CI.

Results

Search Results (eligible studies)
Searching at the initial stage, 88 articles were found from PubMed, Science Direct, Google scholar. After accessing the irrelevant and duplicate articles, the number of the articles were 60. Then, screening, reading abstract, and accessing the objectives mentioned above, only 33 articles (26 on dairy cows and 7 on dairy goats) were chosen visualized in Figure 1. The eligible studies are presented under the study column of Table 1 and Table 2.

Figures

Figure 1. Flow diagram of the method of studies selection for the meta-analysis

Prevalence Estimation
Table 1, Table 2, and Table 3 represents the total meta-analysis result of mastitis, including clinical and subclinical-mastitis in selected species (dairy cow and lactating goat). Obtaining data from a total of 10877 animals including, 7011 dairy cows and 3866 dairy goats were used for meta-analysis. In the result section, the random effect model showed the overall prevalence of both types of mastitis was 43.0%, where the 95% CI was 37.0 - 50.0% in the dairy cow. Similarly, the overall prevalence of mastitis was 31.0% (95% CI: 15.0 - 47.0% in dairy goat. Moreover, significant heterogeneity (Q = 1688.425 for cow and Q = 254.932 for dairy goat) was perceived between the studies, where inverse variance index value (F) was 97.8% for cow and 99.6% for dairy goat presented in Table 3.
Table 1. Description of each selected study for calculating meta-analysis in dairy cattle.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location (District in Bangladesh)</th>
<th>Duration (Year)</th>
<th>Total Sample</th>
<th>Positive case (%)</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kahirl et al., 2008)</td>
<td>Sylhet</td>
<td>2006</td>
<td>456</td>
<td>246 (53.95)</td>
<td>SCM</td>
</tr>
<tr>
<td>(M. M. Rahman et al., 2010)</td>
<td>Sylhet</td>
<td>2008-2009</td>
<td>158</td>
<td>81 (51.27)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Uddin et al., 2010)</td>
<td>Chittagong</td>
<td>2008</td>
<td>306</td>
<td>215 (70.26)</td>
<td>SCM</td>
</tr>
<tr>
<td>(M. A. Islam et al., 2010)</td>
<td>Sirajganj</td>
<td>2009</td>
<td>330</td>
<td>120 (36.36)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Rabbani and Samad, 2010)</td>
<td>Mymensingh</td>
<td>2008</td>
<td>116</td>
<td>51 (43.97)</td>
<td>SCM</td>
</tr>
<tr>
<td>(M. M. Islam et al., 2012)</td>
<td>Chittagong</td>
<td>2011</td>
<td>602</td>
<td>124 (20.60)</td>
<td>CM</td>
</tr>
<tr>
<td>(M. Islam et al., 2012)</td>
<td>Mymensingh & Tangail</td>
<td>2009-2010</td>
<td>200</td>
<td>58 (29.00)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Haque et al., 2014)</td>
<td>Satkhira</td>
<td>2012-2013</td>
<td>150</td>
<td>52 (34.67)</td>
<td>CM & SCM</td>
</tr>
<tr>
<td>(Kayesh et al., 2014)</td>
<td>Barishal</td>
<td>2013-2014</td>
<td>200</td>
<td>57 (28.50)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Siidduque et al., 2014)</td>
<td>Mymensingh</td>
<td>2011-2012</td>
<td>158</td>
<td>87 (35.06)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Quaderi et al., 2014)</td>
<td>Mymensingh & Dhaka</td>
<td>2005-2007</td>
<td>560</td>
<td>380 (67.86)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Tripura et al., 2014)</td>
<td>Mymensingh & Lakshmipur</td>
<td>2011-2012</td>
<td>139</td>
<td>72 (51.80)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Barna et al., 2014)</td>
<td>Chittagong</td>
<td>2012</td>
<td>444</td>
<td>144 (32.43)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Hoque et al., 2014)</td>
<td>Chittagong, Dhaka, Sirajganj,</td>
<td></td>
<td></td>
<td></td>
<td>SCM</td>
</tr>
<tr>
<td></td>
<td>Mymensingh & Gazipur</td>
<td></td>
<td></td>
<td></td>
<td>SCM</td>
</tr>
</tbody>
</table>

TM: Type of Mastitis, SCM: Sub-clinical Mastitis, CM: Clinical Mastitis

Table 2. Description of each selected study for calculating meta-analysis in dairy goat.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location (District in Bangladesh)</th>
<th>Duration (Year)</th>
<th>Total Sample</th>
<th>Positive case (%)</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Saha. et al., 2014)</td>
<td>Chittagong</td>
<td>2013-2014</td>
<td>153</td>
<td>100 (65.36)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Bari et al., 2016)</td>
<td>Chittagong</td>
<td>2013</td>
<td>634</td>
<td>53 (8.36)</td>
<td>CM</td>
</tr>
<tr>
<td>(Hossain et al., 2016)</td>
<td>Jessore</td>
<td>2013</td>
<td>432</td>
<td>65 (15.05)</td>
<td>CM</td>
</tr>
<tr>
<td>(Khokon et al., 2017)</td>
<td>Chittagong</td>
<td>2011-2013</td>
<td>100</td>
<td>69 (69.00)</td>
<td>CM & SCM</td>
</tr>
<tr>
<td>(Biswa and Sarker, 2017)</td>
<td>Barishal</td>
<td>2014</td>
<td>64</td>
<td>33 (51.56)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Kabir et al., 2017)</td>
<td>Sirajganj</td>
<td>2015-2016</td>
<td>300</td>
<td>153 (51.00)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Nahian et al., 2018)</td>
<td>Satkhira</td>
<td>2018</td>
<td>250</td>
<td>66 (26.40)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Meher et al., 2018)</td>
<td>Barishal</td>
<td>2016-2017</td>
<td>152</td>
<td>54 (35.53)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Arman et al., 2018)</td>
<td>Dhaka & Chittagong</td>
<td>2017</td>
<td>287</td>
<td>118 (41.11)</td>
<td>SCM</td>
</tr>
<tr>
<td>(S. Islam et al., 2019)</td>
<td>Chittagong</td>
<td>2015</td>
<td>114</td>
<td>39 (34.21)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Bhuiyan et al., 2020)</td>
<td>Brahmanbaria</td>
<td>2018</td>
<td>400</td>
<td>115 (28.75)</td>
<td>SCM</td>
</tr>
<tr>
<td>(Sayeed et al., 2020)</td>
<td>Jhenaidah</td>
<td>2019</td>
<td>78</td>
<td>53 (67.95)</td>
<td>SCM</td>
</tr>
</tbody>
</table>

TM: Type of Mastitis, SCM: Sub-clinical Mastitis, CM: Clinical Mastitis

Table 3. Overall prevalence rate with heterogeneity of mastitis in dairy cattle and goat.

<table>
<thead>
<tr>
<th>Species</th>
<th>Total Sample</th>
<th>Pooled estimate (%)</th>
<th>95% CI</th>
<th>Heterogeneity (χ^2)</th>
<th>F (%)</th>
<th>P-value</th>
<th>Tau²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>7011</td>
<td>43.0</td>
<td>37 - 50</td>
<td>1688.425</td>
<td>97.8</td>
<td>< .001</td>
<td>0.031</td>
</tr>
<tr>
<td>Goat</td>
<td>3866</td>
<td>31.0</td>
<td>15 - 47</td>
<td>254.932</td>
<td>99.6</td>
<td>< .001</td>
<td>0.044</td>
</tr>
</tbody>
</table>

Figure 2. Forest plot showing the estimate prevalence rate of mastitis in dairy cattle of Bangladesh

Figure 3. The disseminating points of the funnel plot show the overall estimate prevalence, along with publication bias in the dairy cattle of Bangladesh
The overall prevalence, along with separate occurrence was presented in Figure 2 and Figure 4. Besides, funnel plot individually for the cow, and dairy goat represents publication bias by presenting the non-symmetrical shape of a funnel with dropping the points exterior to the funnel (Figure 3 and Figure 5).

![Forest plot showing the estimate prevalence rate of mastitis in dairy goat of Bangladesh](Image)

![The disseminating points of the funnel plot show the overall estimate prevalence, along with publication bias in the dairy goat of Bangladesh](Image)

Discussion

Mastitis is one of the most common bacterial diseases in cattle, while it is also seen in Bangladesh’s dairy goat population. Thus, the prevalence rate of mastitis has been shown in previous researches, but this is the first study to analyse the outline of the overall random model pooled prevalence rate in cattle and dairy goats using the meta-analysis process. Analysing the result, the significant inverse variation indexes of overall prevalence rate in cow and dairy goat between the respective studies imply a strong heterogenic index. The findings showed that Chittagong and Mymensingh had the highest number of study locations due to the existence of reputable agricultural institutes in those regions. Variations in cow level factors, agroclimatic circumstances, and farm management tradition could be linked to distinct outcome (Getaneh and Gebremedhin, 2017; Joshi and Gokhale, 2006).

The meta-analysis summarized that the estimated prevalence rate was 43.0% (95% CI: 37.0 - 50.0%) in dairy cow, which is lower than another study reported in Ethiopia found 47.0% (95% CI = 42.0 - 52.0%) prevalence rate (Getaneh and Gebremedhin, 2017). Similarly, in regions of Kenya, the overall prevalence rate of mastitis was calculated to 80%, which is far higher than the present meta-analysis summarizes (Mbindyo et al., 2020). In contrast, rendering to a recent study, the overall occurrence rate of mastitis among cows in one segment of India was 5.1% indicates significantly lower occurrence than the current study findings (Dutta and Gowder, 2018). On the other hand, few research on the prevalence of mastitis in dairy goats were obtained due to their decreased susceptibility; among them, one study showed a 40.4% prevalence rate in Nigeria, which was lower than the present study's outcome (31.0%) (Danmallam and Pimenov, 2019). Dissimilarly, another research held in Kenya listed 72.7% prevalence rate of mastitis among dairy goats (Okoko et al., 2020). Finally, in Ethiopia, Alemu and Abraha, 2017 found that the prevalence rate of mastitis in cows and goats was 48.0% and 30.8%, respectively, concluding the cattle population has a greater susceptible rate than the goat population.

To sum up, this study demonstrated the combined prevalence of clinical and subclinical mastitis in Bangladeshi dairy animals (cow and goat) using a random model effect. Thus, the general conclusion of the prevalence rate is notably conspicuous in the cattle population. Moreover, this prevalence rate has the potential to have a significant impact on Bangladesh’s rapidly expanding milk production and processing infrastructure. This study also recommends that farmers should enrich the knowledge about the essential management system.

Limitations

This research presents only pooled extermination without taking into account the troubling causes, including risk factors, climatic conditions, and disease connotations. In addition, all the paper chosen was not taken homogeneously from around the country.

Acknowledgements:

The author is thankful to Dr. Mukthar Mia, Department of Poultry Science, SAU for providing guideline.

References

Hoque MN, Das ZC, Talukder AK, Alam MS, Rahman ANMA. 2014. Different screening tests and milk somatic cell count for the prevalence of subclinical bovine mastitis in Bangladesh. Tropical Animal Health and Production, 47: 79–86. https://doi.org/10.1007/s11250-014-0688-0

1366

