Effect of Calving Season, Calving Year and Lactation Number on the Milk Yield Traits in Holstein Cows Raising in Şanlurfa

Durhasan Mundan¹,a,*, Abuzer Kafar Zonturlu¹,b, Yahya Öztürk²,c, Tuğra Akkuş¹,d, Cihan Kaçar³,e

¹Faculty of Veterinary Medicine, Harran University, 63000 Şanlıurfa, Turkey
²Burdur Vocational School, Mehmet Akif Ersoy University, 15030 Burdur, Turkey
³Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Turkey
⁴Corresponding author

Research Article

Received : 02/10/2019
Accepted : 30/01/2020

Keywords:
Calving season
Herd health management
Holstein
Lactation number
Milk yield characteristics

The aim of the present study is to investigate the impact of some environmental factors on the descriptive values of milk yield characteristics in Holstein cows. For this purpose, a total of 241 lactations belonging to 62 Holstein cows had been kept as breeders in a private establishment were evaluated for 7 years in terms of milk yield. When the recording system of the establishment was examined, the average values of lactation yield (LY), corrected 305 day milk yield (305-dMY), average daily milk yield (ADMY) and lactation length (LL) were 9356.2±126.1 kg, 28.0±0.3 kg and 315.0±2.3 days, respectively. The least mean squares (LMS) of LY was calculated as 9324.9 kg. It was found that the effect of the calving season on the LY was statistically significant (P<0.05), while its effect on the 305-dMY, ADMY and LL was insignificant. The effect of the calving interval on LY, 305-dMY and ADMY was statistically significant (P<0.001). As a result, it is concluded that calving season, year and lactation number affect the LY traits in Holstein cows and it is understood that pregnant Holstein cows import from Germany are more adaptable to the region under appropriate environmental conditions along with overall herd health and management.

Introduction

Holstein is the most common population of the culture breeds grown in Turkey. It has been imported in order to supply male and female animal stock for breeding studies (Alpan and Aksoy, 2015). The most important of these includes the studies done to control the yield and to establish and improve the pedigree system.

The most effective way of achieving profitability in dairies is a well-established herd-health management. Factors that influence milk yield for low-cost milk production in establishments and determination of their impact on milk yield and quality in the positive or negative direction are among the priority issues. This activity is possible in businesses that keep regular and accurate records. The Holstein breed is preferred by breeders because of the high milk yield, good fattening performance and rather less difficulty in adaptation and success in breed selection can be achieved through proper record-keeping. FAO (2018) reports that the average milk yield obtained per lactating animal is 9.219 kg in the USA, 6012 kg in EU countries, while it is reported between 5.000 and 7.000 kg in Turkey.

Age and lactation number in cows are among the other important factors affecting milk yield. With the increase in the lactation numbers, improved milk yield is observed. Milk yield which is low in the first lactation, in the lactation numbers, improved milk yield is observed.
other factors such as age (Souza et al., 1996; Thaler Neto et al., 1996) and the duration of lactation (Afifi et al., 1994; Ali et al., 1996; Udedibie et al., 1985). According to the results of age-related research, a heifer at 2 years old gives approximately 70-75% of adult milk yield, 80-85% at second calving, and 90-95% at third and fourth calving (Alpan and Aksoy, 2015).

In terms of nutritional factors in cows, animals must be fed in an adequate and balanced manner so that milk can be obtained from dairy cows in desired quantities. No matter how good the breed of the animal is, the milk yield is low if the animal cannot be fed adequately and balanced, and if sufficient water requirements cannot be met. In the first and second lactations, the quality and quantity of the ratio should be adjusted considering the age and body growth together along with the efficiency share (Alpan and Aksoy, 2015; Uğur, 2014).

A large number of studies have been conducted in order to determine several productivity characteristics and environmental factors that affect them in Holstein breed cattle grown in Turkey (Afifi et al., 1994; Ajjil et al., 2007; Akkaş, 2008; Ali et al., 1996; Bakır and Çetin, 2003; Bayrıl and Yılmaz, 2010; Bayrıl and Yılmaz, 2017; İnci et al., 2007; Lackovic et al., 1995; Udedibie et al., 1985). The purpose of this study was to determine the descriptive values of milk production characteristics of Holstein cows grown in a private milk establishment in Şanlıurfa province and to reveal their performances in the region.

Materials and Method

Location and Materials

Şanlıurfa is located at 37 49 '12".- 40 10' 00" east longitude and 36 41' 28".- 37 57' 50" north latitudes in the Southeastern Anatolia Region of Turkey. It has elevation of 546.85 meters above sea level.

The present study investigated the distribution of milk yield characteristics according to years and seasons of a total of 62 cows (2-9 age) who were imported from Germany as pregnant and were raised as breeders in Şanlıurfa province centre. Computer registry data were examined and healthy cows which had normal birth, did not have any reproductive disorder, and did not have a postpartum problem were used as the research material.

The rations of cows are carried out twice a day with feed mix and spreading wagons. The ration levels of the postpartum problem were used as the research material.

Statistical Analysis

The descriptive values of the milk yield characteristics of cows and the impacts of environmental factors were determined by the LMS method. The significance control of the differences between the group averages and their comparison were made using the General Linear Model (GLM) in the SPSS package program.

For this purpose, \(Yi_{ijklm} = \mu + a_i + b_j + c_k + bX_{ijk} + e_{ijklm} \) was used as a model in the analysis of the environmental factors affecting the milk yield characteristics.

Terms refer to:

- \(Yi_{ijklm} \) = observation value of the milk yield characteristic,
- \(a_i \) = i. calving season,
- \(b_j \) = j. lactation number,
- \(c_k \) = k. calving year,
- \(bX_{ijk} \) = i. season, j. number of lactation, k. year,
- \(e_{ijklm} \) = impact of error.

Results

Descriptive statistical values of milk yield characteristics are given in Table 2. The highest coefficient of variation (CV) (20.9%) belongs to LV; the lowest CV (7.5%) belongs to LL. The calculated CV of milk yield, regardless of LL, was 26%.

Results of LMS, significance test regarding LY, 305-dMY, ADMY and LL are given in Table 3. Only the effect on calving year (\(P<0.001 \)) 305-dMY was found significant. 305-dMY and ADMY were found to be statistically insignificant although cows that gave birth in the spring were numerically higher than those who gave birth in other seasons. It was observed that the effect of LY was statistically significant when the effect of calving season (\(P<0.05 \)) and the year of calving (\(P<0.001 \)) were examined.

The results of LMS, significance and multiple comparison test of LL are given in Table 3. According to this table, the average duration of lactation was 315.0 days. This value is 13.4 days shorter than the expected value, 305 days. Calving season, calving year and lactation number factors were not significant on LL.

Cows were monitored for presence of estrus by pedometer and artificial insemination was applied to those in which clinical signs of estrus were observed. The calves were fed for 3 months in separate paddocks after birth. The cows were automatically enrolled in the individual daily milk production computer system by milking with the Rotary milking system twice a day, at intervals of 12 hours. Animals were kept in semi-open and free-standing stables. In the stables, rubber beds were used as bedplate. There were scratching brushes for animal welfare. Shadows against heat stress and water mist nozzle installations with the fan system were used.
Table 2. Descriptive statistics of milk yield characteristics in Holstein cows.

<table>
<thead>
<tr>
<th>Characters</th>
<th>N (Number of records)</th>
<th>X±S, X</th>
<th>Min</th>
<th>Max</th>
<th>CV (%)</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY (kg)</td>
<td>241</td>
<td>9356.2±126.1</td>
<td>3000</td>
<td>13942</td>
<td>20.9</td>
<td>3833503.7</td>
</tr>
<tr>
<td>305-dMY (kg)</td>
<td>241</td>
<td>8549.2±105.8</td>
<td>3000</td>
<td>13478.1</td>
<td>19.2</td>
<td>2699633.4</td>
</tr>
<tr>
<td>ADMY (kg)</td>
<td>241</td>
<td>28.0±0.3</td>
<td>9.84</td>
<td>44.2</td>
<td>19.2</td>
<td>29.0</td>
</tr>
<tr>
<td>LL (day)</td>
<td>241</td>
<td>315.0±2.3</td>
<td>261</td>
<td>355</td>
<td>7.5</td>
<td>573.0</td>
</tr>
</tbody>
</table>

Table 3. The LMS values of LY, 305-dMY and LL.

<table>
<thead>
<tr>
<th>Factors</th>
<th>N</th>
<th>LY</th>
<th>305-dMY</th>
<th>ADMY</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X±S</td>
<td>X±S</td>
<td>X±S</td>
<td>X±S</td>
</tr>
<tr>
<td>Calving season</td>
<td></td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Winter</td>
<td>95</td>
<td>9290.2±248.9</td>
<td>8323.3±217.1</td>
<td>27.0±0.6</td>
<td>315.8±3.0</td>
</tr>
<tr>
<td>Spring</td>
<td>47</td>
<td>9913.1±324.7</td>
<td>8555.0±283.2</td>
<td>27.4±0.9</td>
<td>322.4±3.9</td>
</tr>
<tr>
<td>Summer</td>
<td>26</td>
<td>8979.2±380.6</td>
<td>8108.4±331.9</td>
<td>26.3±1.1</td>
<td>308.7±4.6</td>
</tr>
<tr>
<td>Autumn</td>
<td>73</td>
<td>8968.4±237.5</td>
<td>8082.6±207.1</td>
<td>26.2±0.6</td>
<td>313.2±2.8</td>
</tr>
<tr>
<td>General average</td>
<td>241</td>
<td>9287.7±195.1</td>
<td>8267.3±170.2</td>
<td>26.7±0.5</td>
<td>315.0±2.3</td>
</tr>
<tr>
<td>Calving year</td>
<td></td>
<td>**</td>
<td>***</td>
<td>***</td>
<td>NS</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>7984.9±757.1</td>
<td>6726.5±660.2</td>
<td>19.9±2.0</td>
<td>318.8±9.1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>9590.0±596.1</td>
<td>8210.6±519.8</td>
<td>26.1±1.6</td>
<td>321.3±7.1</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>9851.7±392.2</td>
<td>8423.1±342.0</td>
<td>26.8±1.0</td>
<td>321.4±4.7</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>9665.8±313.1</td>
<td>8481.0±273.0</td>
<td>27.5±0.8</td>
<td>314.6±3.7</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>10001.3±273.2</td>
<td>8914.3±238.2</td>
<td>30.2±0.7</td>
<td>314.0±3.3</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>9230.8±275.4</td>
<td>8361.0±240.2</td>
<td>27.9±0.7</td>
<td>312.7±3.3</td>
</tr>
<tr>
<td>7≥</td>
<td>36</td>
<td>8689.7±364.7</td>
<td>8754.5±318.0</td>
<td>28.8±0.9</td>
<td>302.4±4.4</td>
</tr>
<tr>
<td>General average</td>
<td>241</td>
<td>9287.7±195.1</td>
<td>8267.3±170.2</td>
<td>26.7±0.5</td>
<td>315.0±2.3</td>
</tr>
<tr>
<td>Lactation number</td>
<td></td>
<td>**</td>
<td>NS</td>
<td>**</td>
<td>NS</td>
</tr>
<tr>
<td>1</td>
<td>62</td>
<td>7758.7±275.1</td>
<td>7622.1±239.9</td>
<td>25.0±0.8</td>
<td>307.9±3.3</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>9267.6±284.2</td>
<td>8740.7±247.8</td>
<td>28.7±1.0</td>
<td>316.0±3.4</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>9849.0±313.2</td>
<td>8604.7±273.1</td>
<td>28.2±0.9</td>
<td>318.2±3.8</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>9962.7±381.0</td>
<td>8322.1±332.2</td>
<td>27.3±1.1</td>
<td>323.1±4.6</td>
</tr>
<tr>
<td>5≥</td>
<td>20</td>
<td>9600.6±502.0</td>
<td>8046.9±437.8</td>
<td>26.4±1.4</td>
<td>309.9±6.0</td>
</tr>
<tr>
<td>General average</td>
<td>241</td>
<td>9287.7±195.1</td>
<td>8267.3±170.2</td>
<td>26.7±0.5</td>
<td>315.0±2.3</td>
</tr>
</tbody>
</table>

a,b: The difference between values with different letter in the same column is significant (P<0.05); *P<0.05; **P<0.01; ***P<0.001; NS: Not significant.

Discussion

In the present study, LY in Holstein cows, (9356.2 kg) is higher than the value reported by some researchers (Muir et al., 2004; Özcan, 1994; Haile-Mariam et al., 2003; Çerçi, 2006; Koçak et al., 2007; Parlak ve Kandır, 2015; Uzmay et al., 1998) while it is similar to those reported by other authors (Bayrıl and Yılmaz, 2010; Stanton et al., 1991; Wade and Van Vleck, 1989).

According to the obtained data, the effect of the calving year on LY is important. This finding is consistent with those reported by Inci et al. (2007), Özcan (1994) and Güneş (1999). The importance of the effect of the calving season is consistent with the studies conducted by Inci et al. (2007), Özcan (1994) and Güneş (1999). LY, was highest in the establishment in 2007 (8. year) and lowest in 2005 (6. year). The reason for this is thought to be that the environmental factors have had different effects over the years.

LY determined for the breed cows at this establishment in Şanlıurfa was higher than other studies conducted in Turkey, we believe that the reason for this could be that Holstein cows in this establishment were well adapted to operating conditions and herd health management program was carried out successfully. Furthermore, if we consider that the CV of milk yield changes between 15-25%, it can be said that the variation in milk yield is very high in the population.

305-dMY (8549.15 kg) value was found to be higher than that reported by some researchers (Atashi et al., 2012; Bakar and Çetin, 2003; Campos et al., 1994; Çerçi, 2006; Elzo et al., 2004; Hamşa, 2002; Kadarmideen et al., 2000; Mayne and McCoy, 2002; Pryce, 2003), while it was similar to that reported by some other researchers (Cady, 1991; Gröhn and McDermott, 1999) and similar to that reported by others (Bayrıl and Yılmaz, 2017; Ojango and Pollot, 2002). This indicates that the animals in the establishment where study was conducted constitute a well breeding herd and that the registration system is kept fastidiously and regularly.

In our study, the effects of calving age on 305-dMY were significant (P<0.05) while the effects of calving season, year and lactation number were insignificant (P>0.05). In Tunisia and Iran, it was found that the effect of the calving year and calving season on the milk yield was significant (P<0.01) (AJili et al., 2007; Nilforooshan and Edriss, 2004).

The LL was calculated as 314.3 days in this study. While this value was higher than the value reported by some researchers (Abubakar et al., 1986; Catilino et al., 1995; Sehar and Özbeayaz, 2005; Özçelik and Arpacık, 2000), it was lower than that reported by some other researchers (Akkaş, 2008; Çerçi, 2006; Haile-Mariam et al., 2003; Koçak et al., 2007; Parlak ve Kandır, 2015; Ojango and
Pollot, 2002) and was similar to that calculated by some others (Bayrıl and Yılmaz, 2017; Doğan M, Kaygısız, 1999). This value appears to be about 9 days longer than the 305 day period, which is considered as the standard lactation time. In this study, the length of lactation indicates that cows could be milked for a long time in order to obtain more milk in the establishment.

As a result, it is concluded that calving season, calving year and lactation number have an impact on milk yield characteristics; it is suggested that higher lactation milk yield in this dairy establishment compared to other establishments in the region is achieved thanks to better adaptability along with well-maintained herd health and management.

References

