Improvement of Sperm Motility of Rainbow Trout (Oncorhynchus mykiss W., 1792) by Supplementation of L-Arginine

Durali Danabaş1, a, *, Mehmet Kocabaş2, b, Filiz Kutluyer1,c

1Fisheries Faculty, Manzur University, 62000 Tunceli, Turkey
2Department of Wildlife Ecology & Management, Faculty of Forestry, Karadeniz Technical University, 61080 Trabzon, Turkey
3Corresponding author

A R T I C L E I N F O

Research Article

Received : 26/02/2019
Accepted : 05/08/2019

Keywords:
L-arginine
Sperm Quality
Oncorhynchus mykiss
Rainbow Trout
Amino Acid

A B S T R A C T

In this study, the effect of supplementing amino acid-precursor of nitric oxide (NO) L-arginine were examined on sperm motility of rainbow trout Oncorhynchus mykiss. Different concentrations [0 mM (Control), 1 mM, 2 mM, 4 mM and 8 mM] of L-arginine were used in the study. To assess the effects on percentage of motile sperm and longevity, L-arginine was added to activation medium containing NaCl (52 mM). The higher L-arginine concentration (4mM) has promoting-effect on sperm motility. The treatments containing L-arginine caused significant effect on percentage of motile sperm and longevity. Overall, the findings of the present study indicated that supplementation of L-arginine may have improving effects on sperm motility of rainbow trout.

Introduction

In aquaculture and aquatic life, fertilizing ability and hatching success are correlated with sperm motility (Kutluyer et al., 2015, 2016; Kocabas et al., 2011; Kocabas and Kutluyer, 2017a, b, c). The extinction or loss of populations and reducing productivity might be due to poor sperm quality (Kocabas et al., 2018). In multiple biologic and psychological processes, amino acids have an important role (Kutluyer et al., 2016). Due to their antioxidant properties, structure of membrane is protected by amino acids. L-arginine being the main precursor of nitric oxide (NO) is needed in living organism for protein synthesis (Santana et al., 2016; Salgueiro et al., 2017). Superoxide and hydrogen peroxide is decreased by NO. Thus, protection to free radical damage is provided by L-arginine (Scott and Bolton, 2000). Under in vitro conditions, studies in different species (e.g. pig, humans, buffalo, rabbits, bovine, goat and mouse) have been conducted on the sperm motility (Herrero et al., 1994; Hellstrom et al., 1994; Aydin et al., 1995; Patel et al., 1998, 1999; Zhang and Zheng, 1996; Yeoman et al., 1998; Srivastava et al., 2006). Literature in these studies stated that L-arginine addition provided decreasing lipid peroxidation and improving sperm capacitating parameters. In fish (Çoruh trout, Salmo coruhensis) spermatozoa, only a study has been performed about in vitro impact of L-arginine on sperm motility by Kocabas et al. (2018). Within this context, experiments were realized to determination the optimal concentration of L-arginine for improved sperm motility of rainbow trout.

Material and Method

Semen Collection and Processing

Collection of sperm was made from three-year-old 6 mature rainbow trout’s in a commercial fish farm. Sperm was collected during the 2017 breeding season. The water temperature was at 6.9±0.1°C, pH around 8.34, and dissolved oxygen 8.5±0.3 mg liters⁻¹ with natural photoperiod. Fish were anesthetized with 2-phenoxyethanol (0.6 ml L⁻¹) and abdominal massage technique was applied for stripping. The sperm contaminated with urine, water, blood or feces were disused in the experiments. Sperm was stripped into a collection 50 ml vial and kept on ice transport purposes until sperm analysis commenced in less than 30 min after collection.
Sperm Quality Assessment

Different concentrations [0 mM (Control), 1 mM, 2 mM, 4 mM and 8 mM] of L-arginine were added to activation solution (NaCl, 52 mM). After supplementation, percentage and longevity of motile sperm cells were determined. Progressive motility was recorded using the SCA (Sperm Class Analyzer) system. Duration of progressive motility was described as time from activation initiation to sperm stop move. The selected sperm samples (normal pH, volume and motility >80%) were pooled for experiments. Thoma cell hemocytometer was used for determination of spermatozoa density. Spermatocrit (%) was determined using the method of Rurangwa et al. (2004).

Statistical Analysis

Data obtained from measurements are given as the mean ± standard deviation. For comparison of data, One-way ANOVA was used with Duncan Multiple Range Test. A minimum significance level of P<0.05 was accepted. Data were analyzed using SPSS 24.0 software.

Results and Discussion

Table 1 summarizes sperm quality parameters (mean ± SD) assessed for O. mykiss applied L-arginine, were given in the Table 2. In fresh spermatozoa, the motility percent and longevity were 88.33±2.89 % and 45.99±1.34 s, respectively. Comparable results about sperm quality parameters in previous studies and the present findings are presented in Table 3. The results of the present study differs from former studies due to different factors (e.g.; age and weight of broodstock, term and method of stripping, habitat of broodstock) (Piironen and Hyvarinen, 1983; Suquet et al., 1994; Tekin et al., 2003; Kocabaş et al., 2012; Kocabaş and Kutluyer, 2017b).

Former studies in humans and animals demonstrated that L-arginine supplementation had a positive impact on the motility of spermatozoa because of deactivation superoxide through NO (Herrero et al., 1994; Hellstrom et al., 1994; Aydin et al., 1995; Patel et al., 1998, 1999; Zhang and Zheng, 1996; Yeoman et al., 1998; Srivastava et al., 2006; Buzadzic et al., 2015). Our results are in line with previous reports. Consistent with previous studies, longevity and percentage of motility were increased by L-arginine (Figure 1 and 2). The maximum increase was obtained from the treatment containing 4 mM L-arginine. Significant increased motility (91.25±2.50 %) (P=0.041, P<0.05) and longevity (52.94±3.03 s) (P=0.028, P<0.05) of rainbow trout spermatozoa was in the high concentration of L-arginine. The arginine-induced NO production might be reason of the increment in cells. NO production cause to increase in protein phosphorylation and modifications through the activation of soluble guanylyl cyclase and S-nitrosylation of cysteine residues (LeFievre et al., 2007; Santana et al., 2016). NO production through L-arginine can be prevented oxidative damage in sperm cells due to stimulate the sperm chemotaxis and reaction of acrosome (Revelli et al., 2001; Hassanpour et al., 2010).

Table 1 Summary of standard sperm quality parameters (mean ± SD) assessed for O. mykiss (n=6).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Colour</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>White</td>
<td>8.60±4.31</td>
<td>2.5-13.0</td>
</tr>
<tr>
<td>pH</td>
<td>7.75±0.14</td>
<td>7.54-7.88</td>
<td></td>
</tr>
<tr>
<td>Spermatoctrit (%)</td>
<td>19.27±0.24</td>
<td>8.57-40.00</td>
<td></td>
</tr>
<tr>
<td>Sperm density (×10⁶)</td>
<td>9.27±0.56</td>
<td>9.17-9.37</td>
<td></td>
</tr>
<tr>
<td>Sperm motility (%)</td>
<td>88.33±2.89</td>
<td>85-90</td>
<td></td>
</tr>
<tr>
<td>Motility duration (s)</td>
<td>45.99±15.45</td>
<td>29.59</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Sperm motility rate (%) and motility duration (s) of groups in the O. mykiss applied L-arginine (Mean±SD)

<table>
<thead>
<tr>
<th>Treatments (mM)</th>
<th>Control (0)</th>
<th>Treatment 1</th>
<th>Treatment 2</th>
<th>Treatment 4</th>
<th>Treatment 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperm Motility Rate (%)</td>
<td>88.33±2.89</td>
<td>45.99±15.45</td>
<td>46.65±5.60</td>
<td>52.08±5.86</td>
<td>52.94±3.03</td>
</tr>
<tr>
<td>Motility Duration (s)</td>
<td>46.33±4.76</td>
<td>45.99±15.45</td>
<td>46.65±5.60</td>
<td>52.08±5.86</td>
<td>52.94±3.03</td>
</tr>
</tbody>
</table>

Table 3 Some sperm quality characteristics in Salmonids reported from present study and former studies.

<table>
<thead>
<tr>
<th>Species</th>
<th>SV (ml)</th>
<th>pH</th>
<th>SP</th>
<th>SD</th>
<th>Researcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmo salar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aas et al. (1991)</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
<td>Ciereszko and Dabrowski (1993)</td>
</tr>
<tr>
<td>Salmo trutta caspius</td>
<td>28.8±45.6</td>
<td></td>
<td></td>
<td></td>
<td>Hajirezaee et al (2010)</td>
</tr>
<tr>
<td>Salmo trutta macrostigma</td>
<td>13.93±0.84</td>
<td>7.53±0.20</td>
<td>55.6 (24-72)</td>
<td>0.8–5.3</td>
<td>Bozkurt et al. (2011)</td>
</tr>
<tr>
<td>Salmo cettii</td>
<td>0.2-5</td>
<td></td>
<td></td>
<td></td>
<td>Iaffaldano et al. (2016)</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>7.33±0.18</td>
<td>7.17±0.34</td>
<td>40.00±0.18</td>
<td>3.81±0.24</td>
<td>Kocabaş and Kutluyer (2017a)</td>
</tr>
<tr>
<td>Salmo rizeensis</td>
<td>7.00±0.25</td>
<td>7.76±0.22</td>
<td>55.33±0.24</td>
<td>9.27±0.56</td>
<td>Kutluyer and Kocabaş (2017)</td>
</tr>
<tr>
<td>Salmo coruhensis</td>
<td>6.67±0.53</td>
<td>7.71±0.14</td>
<td>50.00±0.35</td>
<td>6.18±0.52</td>
<td>Kocabaş and Kutluyer (2017b)</td>
</tr>
<tr>
<td>Salmo coruhensis</td>
<td>4.25±0.95</td>
<td>7.60±0.13</td>
<td>31.25±0.24</td>
<td>7.25±0.17</td>
<td>Kocabaş et al. (2018)</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>8.60±4.31</td>
<td>7.75±0.14</td>
<td>19.27±0.24</td>
<td>9.20±0.15</td>
<td>In this study</td>
</tr>
</tbody>
</table>

SV: Sperm volume (ml), SP: Spermatoctrit (%), SD: Sperm density (×10⁶)
In summary, these results showed that L-arginine was the motility-promoting agent and improving sperm motility can be provided by in vitro addition of L-arginine in rainbow trout. This study would be useful to evaluate the L-arginine effect on spermatozoa of other fish species. To clarify its involvement and the mechanism, complementary tests and analysis are needed on subsequent fertilization and hatching success, and larval development.

Acknowledgement

This research was supported by Munzur University, Coordinatorship Unit of Scientific Research Projects (Project Number: PPMUB017-05). However, we would like to thank specially to the reviewers of manuscript and journal team serving during all publication processes because of their contribution.

References

In summary, these results showed that L-arginine was the motility-promoting agent and improving sperm motility can be provided by in vitro addition of L-arginine in rainbow trout. This study would be useful to evaluate the L-arginine effect on spermatozoa of other fish species. To clarify its involvement and the mechanism, complementary tests and analysis are needed on subsequent fertilization and hatching success, and larval development.

Acknowledgement

This research was supported by Munzur University, Coordinatorship Unit of Scientific Research Projects (Project Number: PPMUB017-05). However, we would like to thank specially to the reviewers of manuscript and journal team serving during all publication processes because of their contribution.

References

