Importance of Pseudomonas aeruginosa in Food Safety and Public Health




Food, Pseudomonas aeruginosa, Virulence factors, Biofilm, Antibiotic resistance


Pseudomonas aeruginosa (P. aeruginosa), the most pathogenic species among the pseudomonas species, is a bacterium that causes opportunistic infections resulting in significant damage to host tissues. P. aeruginosa, which is resistant to antibiotics, also causes fatal infection in human and animals. Infections caused by P. aeruginosa are difficult to treat due to its rapid proliferation in the environment and its ability to form biofilms that confer resistance to antibiotics. One of the main virulence factors of P. aeruginosa is its direct damage to host tissues, which disrupts the host’s defense mechanisms. P. aeruginosa is a food-borne pathogen often detected in various food groups such as meat, milk, fruit, vegetables, and water. In recent years, there has been a noticeable rise in food-borne contamination with P. aeruginosa. New measures are urgently needed in the treatment of patients with infections due to this agent, since P. aeruginosa can develop resistance to most antibacterials. In this review, general information about P. aeruginosa, which has gained importance for public health, will be given.

Author Biography

Soner Tutun, Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Sivas, Türkiye

Lisans Doktora


Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV. 2014. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC microbiology, 14(1): 1-10. https://doi:10.1186/1471-2180-14-118

Akan İM, Gürbüz Ü. 2016. Et ve bazı et ürünleri ile soğuk hava depolarında Pseudomonas türlerinin izolasyonu ve identifikasyonu. Eurasian Journal of Veterinary Sciences, 32(4): 268-277.

Akiyama T, Williamson KS, Schaefer R, Pratt S, Chang CB, Franklin MJ. 2017. Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation. Proceedings of the National Academy of Sciences, 114(12): 3204-3209. https://doi:10.1073/pnas.1700695114

Alfiniyah C, Bees MA, Wood AJ. 2019. Quorum machinery: Effect of the las system in rhl regulation of P. aeruginosa. AIP Conf. Proc., 2192(1), 060001. AIP Publishing LLC. https://doi:10.1063/1.5139147

Anantharajah A, Mingeot-Leclercq MP, Van Bambeke F. 2016. Targeting the type three secretion system in Pseudomonas aeruginosa. Trends Pharmacology Science, 37(9): 734-749. https://doi:10.1016/

Anversa L, Arantes Stancari RC, Garbelotti M, da Silva Ruiz L, Pereira VBR, Nogueira Nascentes GA, Stéfani Thais AD, Mores Rall VL. 2019. Pseudomonas aeruginosa in public water supply. Water Practice Technology, 14(3): 732-737.

Arslan S, Eyi A, Özdemir F. 2011. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. Journal of dairy science, 94(12): 5851-5856.

Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Hoiby N. 2004. Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Antimicrobial agents and chemotherapy, 48(4): 1168-1174. https://doi:10.1128/AAC.48.4.1168-1174.2004

Bai X, Nakatsu CH, Bhunia AK. 2021. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods, 10(9): 2117. https://doi:10.3390/foods10092117

Balasubramanian D, Schneper L, Kumari H, Mathee K. 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Research, 41(1): 1-20. https://doi:10.1093/nar/gks1039

Bergagne E. 2004. Pseudomonas and miscelaneus gram negative bacilli. In: Colman J, Powerdyly GW (eds), Infectious Diseases. Kanada, Toronto, p:1733-1748.

Bilgehan H. 2000. Klinik Mikrobiyoloji Özel Bakteriyoloji ve Bakteri Enfeksiyonları. 10. Baskı, İzmir: Barış Yayınları, s:487.

Bleves S, Viarre V, Salacha R, Michel GP, Filloux A, Voulhoux R. 2010. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. International Journal of Medical Microbiology Supplements, 300(8): 534-543. https://doi:10.1016/j.ijmm.2010.08.005

Brady MT. 2009. Pseudomonas and Related Genera. In: Feigin RD, DemlerHarrison GJ, Cherry JD, Kaplan SL (Eds), Feigin&Cherry’s Text Book of Pediatric İnfectious Diseases. 6 th ed. John F. Kennedy, Philadelphia, p:1651-1669.

Branda SS, Vik Å, Friedman L, Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiology, 13(1): 20-26. https://doi:10.1016/j.tim.2004.11.006

Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, Hiatt P, McCoy K, Castile R, Smith AL, Ramsey BW. 2001. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. The Journal of Infectious Diseases, 183(3): 444-452. https://doi:10.1086/318075

Burrows LL. 2012. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annual Review of Microbiology, 66: 493-520. https://doi:10.1146/annurev-micro-092611-150055

Caskey S, Stirling J, Moore JE, Rendall JC. 2018. Occurrence of Pseudomonas aeruginosa in waters: implications for patients with cystic fibrosis (CF). Letters in Applied Microbiology, 66(6): 537-541. https://doi:10.1111/lam.12876

Charles N, Williams SK, Rodrick GE. 2006. Effects of packaging systems on the natural microflora and acceptability of chicken breast meat. Poultry Science, 85(10): 1798-1801. https://doi:10.1093/ps/85.10.1798

Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, Samonis G. 2000. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: retrospective analysis of 245 episodes. Archives of Internal Medicine, 160(4): 501-509. https://doi:10.1001/archinte.160.4.501

Chu T, Ni C, Zhang L, Wang Q, Xiao J, Zhang Y, Liu Q. 2015. A quorum sensing-based in vivo expression system and its application in multivalent bacterial vaccine. Microbial Cell Factories, 14(1): 1-11. https://doi:10.1186/s12934-015-0213-9

Collins CH, Lyne PM, Grange JM. 1989. Collins and Lyne’s Microbiological Methods (Pseudomonas, Acinetobacter, Alcaligenes, Flavobacterium, Chromobacterium and Acetobacter) (6th ed.), Butterworth-Heinemann, Oxford, UK.

Correa CMC, Tibana A, Gontijo Filho PP. 1991. Vegetables as a source of infection with Pseudomonas aeruginosa in a University and Oncology Hospital of Rio de Janeiro. Journal of Hospital Infection, 18(4): 301-306.

Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science, 284(5418): 1318-1322. https://doi:10.1126/science.284.5418.1318

Cousins CM, Bramley AJ. 1983. The microbiology of raw milk. Dairy Microbilogy, 1: 119-164.

Cross AR, Raghuram V, Wang Z, Dey D, Goldberg JB. 2020. Overproduction of the AlgT sigma factor is lethal to mucoid Pseudomonas aeruginosa. Journal of Bacteriology, 202(20): e00445-20. https://doi:10.1128/JB.00445-20

Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2): 114-122. https://doi:10.1038/nrd1008

De Kievit TR. 2009. Quorum sensing in Pseudomonas aeruginosa biofilms. Environmental Microbiology, 11(2): 279-288. https://doi:10.1111/j.1462-2920.2008.01792.x

Dhanashekar R, Akkinepalli S, Nellutla A. 2012. Milk-borne infections. An analysis of their potential effect on the milk industry. Germs, 2(3): 101. https://doi:10.11599/ germs.2012.1020

Dietz H, Pfeifle D, Wiedemann B. 1997. The signal molecule for beta-lactamase induction in Enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrobial Agents and Chemotherapy, 41(10): 2113-2120. https://doi:10.1128/ AAC.41.10.2113

Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2): 167-193. https://doi:10.1128/CMR. 15.2.167-193.2002

Eckmanns T, Oppert M, Martin M, Amorosa R, Zuschneid I, Frei U, Rüden H, Weist K. 2008. An outbreak of hospital-acquired Pseudomonas aeruginosa infection caused by contaminated bottled water in intensive care units. Clinical Microbiology and Infection, 14(5): 454-458. https://doi:10.1111/j.1469-0691.2008.01949.x

Elbehiry A, Marzouk E, Aldubaib M, Moussa I, Abalkhail A, Ibrahem M, Hamada M, Sindi W, Alzaben F, Almuzaini AM, Algammal AM, Rawway M. 2022. Pseudomonas species prevalence, protein analysis, and antibiotic resistance: an evolving public health challenge. AMB Express, 12(1): 1-14. https://doi:10.1186/s13568-022-01390-1

Fooladi AAI, Aghelimansour A, Nourani MR. 2013. Evaluation of the pathogenesis of Pseudomonas aeruginosa’s flagellum before and after flagellar gene knockdown by small interfering RNAs (siRNA). Jundishapur Journal of Microbiology, 6(3): 273-278. https://doi:10.5812/jjm.5401

Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C. 2007. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC microbiology, 7(1): 1-10. https://doi:10.1186/1471-2180-7-45

Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9): 1049-1056.

Garvey MI, Bradley CW, Holden E. 2018. Waterborne Pseudomonas aeruginosa transmission in a hematology unit?. American Journal of Infection Control, 46(4): 383-386. https://doi:

Gellatly SL, Hancock RE. 2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67(3): 159-173. https://doi:10.1016/j.ajic.2017.10.013

Ghafoor A, Hay ID, Rehm BH. 2011. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied and Environmental Microbiology, 77(15): 5238-5246. https://doi:10.1128/AEM.00637-11

Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. 2002. Food spoilage—interactions between food spoilage bacteria. International Journal of Dairy Science, 78(1-2): 79-97. https://doi:10.1016/s0168-1605(02)00233-7

Haiko J, Westerlund-Wikström B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology, 2(4): 1242-1267. https://doi:10.3390/biology2041242

Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D, Grant GD. 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8(8): 236. https://doi:10.3390/toxins8080236

Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2): 95-108. https://doi:10.1038/nrmicro821

Hardalo C, Edberg SC. 1997. Pseudomonas aeruginosa: assessment of risk from drinking water. Critical Reviews in Microbiology, 23(1): 47-75. https://doi:10.3109/10408419709115130

He C, Zhou Y, Liu F, Liu H, Tan H, Jin S, Wu W, Ge B. 2017. Bacterial nucleotidyl cyclase inhibits the host innate immune response by suppressing TAK1 activation. Infection and Immunity, 85(9): e00239-17. https://doi:10.1128/IAI.00239-17

Jacobsen T, Bardiaux B, Francetic O, Izadi-Pruneyre N, Nilges M. 2020. Structure and function of minor pilins of type IV pili. Medical Microbiology and Immunology, 209(3): 301-308.

Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. 2018. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1): 7-11. https://doi:10.1016/j.jcma.2017.07.012

Jarvis FG, Johnson MJ. 1949. A glyco-lipide produced by Pseudomonas aeruginosa. Journal of the American Chemical Society, 71(12): 4124-4126.

Javanmardi F, Emami A, Pirbonyeh N, Keshavarzi A, Rajaee M. 2019. A systematic review and meta-analysis on Exo-toxins prevalence in hospital acquired Pseudomonas aeruginosa isolates. Infection, Genetics and Evolution, 75: 104037. https://doi:10.1016/j.meegid.2019.104037

Jeukens J, Freschi L, Kukavica‐Ibrulj I, Emond‐Rheault JG, Tucker NP, Levesque RC. 2019. Genomics of antibiotic‐resistance prediction in Pseudomonas aeruginosa. Annals of the New York Academy of Sciences, 1435(1): 5-17. https://doi:10.1111/nyas.13358

Jooste PJ, Britz TJ, Lategan PM. 1986. Screening for the Presence of Flavobacterium Strains in Dairy Sources. South African journal of dairy science, 18(2).

Jurado-Martín I, Sainz-Mejías M, McClean S. 2021. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, 22(6): 3128. https://doi:10.3390/ijms22063128

Karaderi CC, Kahraman H. 2017. Pseudomonas aeruginosa’da bakteriyel hareketler (kayma, yüzme, titreme). Elektronik Mikrobiyoloji Dergisi TR, 15(2): 1-5. https://doi:

Keloğlu B, Öztürk Ş, Yalçın S. 2019. Atık sudan izole edilen Pseudomonas spp. suşları ile kurşun ve nikel ağır metallerinin giderimi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 77(3): 289-300.

Khalifa ABH, Moissenet D, Thien HV, Khedher M. 2011. Les facteurs de virulence de Pseudomonas aeruginosa: mécanismes et modes de régulations. Annales de Biologie Clinique, 69(4): 393-403. https://doi:10.1684/abc.2011.0589

Kim JM, Park ES, Jeong JS, Kim KM, Kim JM, Oh HS, Yoon SW, Chang HS, Chang KH, Lee SI, Lee MS, Song JH, Wang MW, Park SC, Choe KW, Pai CH. 2000. Multicenter surveillance study for nosocomial infections in major hospitals in Korea. American Journal of Infection Control, 28(6): 454-458. https://doi:10.1067/mic.2000.107592

King A, Phillips I. 1978. The identification of pseudomonads and related bacteria in a clinical laboratory. Journal of Medical Microbiology, 11(2). 165-176.

King JD, Kocíncová D, Westman EL, Lam JS. 2009. Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immunity, 15(5): 261-312. https://doi:10.1177/1753425909106436

Kipnis E, Sawa T, Wiener-Kronish J. 2006. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Médecine et Maladies Infectieuses, 36(2): 78-91. https://doi:10.1016/j.medmal.2005.10.007

Kleeberger A, Busse M. 1975. Keimzahl und Florazusammensetzung bei Hackfleisch unter besonderer Berücksichtigung von Enterobakterien und Pseudomonaden. ZLUF, 158(6): 321-331. https://doi:

Köhler T, Guanella R, Carlet J, Van Delden C. 2010. Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax, 65(8): 703-710. https://doi:10.1136/thx.2009.133082

Kristiansen AK. 1983. Evaluation of two selective media for rapid isolation of Pseudomonas strains. DVT, 66. 83-91. https://doi:10.1016/j.mimet.2014.01.010

LaBauve AE, Wargo MJ 2012. Growth and laboratory maintenance of Pseudomonas aeruginosa. Current Protocols in Microbiology, 25(1): 6E-1. https://doi:10.1002/9780471729259.mc06e01s25

Lambe Jr DW, Stewart P. 1972. Evaluation of Pseudosel agar as an aid in the identification of Pseudomonas aeruginosa. Applied Microbiology, 23(2): 377-381. https://doi:10.1128/ am.23.2.377-381.1972

Lau GW, Hassett DJ, Ran H, Kong F. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends in Molecular Medicine, 10(12): 599-606. https://doi:10.1016/j.molmed.2004.10.002

Lederberg J. 2000. Pseudomonas. Encyclopedia of Microbiology. Second Edition. San Diego, USA, Volume 3, p:876-891.

Lee K, Yoon SS. 2017. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. Journal of Microbiology and Biotechnology, 27: 1053-1064. https://doi:10.4014/jmb.1611.11056

Lee WI, Jaing TH, Hsieh MY, Kuo ML, Lin SJ, Huang JL. 2006. Distribution, infections, treatments and molecular analysis in a large cohort of patients with primary immunodeficiency diseases (PIDs) in Taiwan. Journal of Clinical Immunology, 26(3): 274-283. https://doi:10.1007/s10875-006-9013-7

Leighton TL, Buensuceso RN, Howell PL, Burrows LL. 2015. Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environmental Microbiology, 17(11): 4148-4163. https://doi:10.1111/1462-2920.12849

Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, Chen L. 2019. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine, 14: 1469. https://doi:10.2147/IJN.S191340

Lopez MES, Carvalho MMD, Gouvêa DM, Batalha LS, Neves IO, Mendonça RCS. 2015. Isolation and Characterization of Lytic Bacteriophages as an Alternative to Prevent Pseudomonas spp in Poultry Industry. MOJ Food Processing & Technology, 1(3): 00018. https://doi:10.15406/mojfpt.2015.01.00018

Lowbury EJL, Thom BT, Lilly HA, Babb JR, Whittall K. 1970. Sources of infection with Pseudomonas aeruginosa in patients with tracheostomy. Journal of Medical Microbiology, 3(1): 39-56. https://doi:10.1099/00222615-3-1-39

Maçin S. 2014. Pigmentli ve Pigmentsiz Pseudomonas Aeruginosa Suşlarının Virulans Faktörlerinin Fenotipik ve Genotipik Olarak Karşılaştırılması. Thesis of Master Degree, Hacettepe Üniversitesi ve Sağlık Bilimler Enstitüsü, Ankara/TÜRKİYE.

Maldonado RF, Sá-Correia I, Valvano MA. 2016. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiology Reviews, 40(4): 480-493. https://doi:10.1093/femsre/fuw007

Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. 2015. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxidants & Redox Signaling, 22(13): 1097-1110. https://doi:10.1089/ars.2014.5979

Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. 2012. Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11(2): 133-147.

Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, Niederman MS, Rello J. 2013. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Journal of Intensive Care Medicine, 39(4): 672-681. https://doi:10.1007/s00134-012-2808-5

Michalska M, Wolf P. 2015. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Frontiers in Microbiology, 6: 963.

Migula W. 1894. Über ein neues System der Bakterien. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe (Almanca). 1: 235–238.

Mitov I, Strateva T, Markova B. 2010. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Brazilian Journal of Microbiology, 41(3): 588-595. https://doi:10.1590/S1517-83822010000300008

Moradali MF, Ghods S, Rehm BH. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7: 39.

Nicas TI, Iglewski BH. 1985. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Canadian Journal of Microbiology, 31(4): 387-392. https://doi:10.1139/m85-074

Nickzad A, Déziel É. 2014. The involvement of rhamnolipids in microbial cell adhesion and biofilm development–an approach for control?. Letters in Applied Microbiology, 58(5): 447-453. https://doi:10.1111/lam.12211

Okuno N, Freire I, Silva C, Marin V. 2021. Pseudomonas aeruginosa and Pseudomonas spp. isolated from fresh Minas cheeses in Rio de Janeiro. Journal of Veterinary Public Health, 8(1): 012-027. https://doi:10.4025/revcivet.v8i1.51027

Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. 2020. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Frontiers in Microbiology, 10: 2894.

O’Malley YQ, Reszka KJ, Rasmussen GT, Abdalla MY, Denning GM, Britigan BE. 2003. The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 285(5): L1077-L1086. https://doi:10.1152/ajplung.00198.2003

Özdemir M, Erayman İ, Dağı HT, Baykan M, Baysal B. 2009. Hastane İnfeksiyonu Etkeni Pseudomonas Suşlarının Antibiyotiklere Duyarlılıkları. Ankem Dergisi, 23(3): 122-126.

Pachori P, Gothalwal R, Gandhi P. 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis., 6(2): 109-119. https://doi:

Palleroni NJ 2010. The pseudomonas story. Environmental Microbiology, 12(6): 1377-1383. https://doi:10.1111/j.1462-2920.2009.02041.x

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1): 177-192. https://doi:10.1016/j.biotechadv.2018.11.013

Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annual Review of Microbiology, 57(1): 677-701. https://doi:10.1146/annurev.micro.57.030502.090720

Paul D, Sinha SN. 2017. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1): 130-136.

Peix A, Ramírez-Bahena MH, Velázquez E. 2009. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infection, Genetics and Evolution, 9(6): 1132-1147. https://doi:10.1016/j.meegid.2009.08.001

Pena RT, Blasco L, Ambroa A, González-Pedrajo B, Fernández-García L, López M, Bleriot I, Bou G, García-Contreras R, Wood TK, & Tomás M. 2019. Relationship between quorum sensing and secretion systems. Frontiers in Microbiology, 10: 1100.

Poole K. 2005. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 49(2): 479-487. https://doi:10.1128/AAC.49.2.479-487.2005

Poursina S, Ahmadi M, Fazeli F, Ariaii P. 2022. Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. Veterinary Medicine and Science, 2022: 1-11.

Rello J, Allegri C, Rodriguez A, Vidaur L, Sirgo G, Gomez F, Agbaht K, Pobo A, Diaz E. 2006. Risk factors for ventilator-associated pneumonia by Pseudomonas aeruginosa in presence of recent antibiotic exposure. Anesthesiology, 105(4): 709-714. https://doi:10.1097/00000542-200610000-00016

Reszka KJ, O’Malley Y, McCormick ML, Denning GM, Britigan BE. 2004. Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free Radical Biology and Medicine, 36(11): 1448-1459. https://doi:10.1016/j.freeradbiomed.2004.03.011

Rezaloo M, Motalebi A, Mashak Z, Anvar A. 2022. Prevalence, Antimicrobial Resistance, and Molecular Description of Pseudomonas aeruginosa Isolated from Meat and Meat Products. J. Food Qual., 2022. 2022/9899338

Rizvi SS, Mohammed-Aslam MA 2019. Microbiological quality of drinking water in Amarja reservoir catchment, Aland taluk, Karnataka, India. Current science, 117(1): 114-121. https://doi:10.18520/cs/v117/i1/114-121

Ruiz-Roldán L, Rojo-Bezares B, Lozano C, López M, Chichón G, Torres C, Sáenz Y. 2021. Occurrence of Pseudomonas spp. in raw vegetables: molecular and phenotypical analysis of their antimicrobial resistance and virulence-related traits. International Journal of Molecular Sciences, 22(23): 12626. https://doi:10.3390/ijms222312626

Sadikot RT, Blackwell TS, Christman JW, Prince AS. 2005. Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. American Journal of Respiratory and Critical Care Medicine, 171(11): 1209-1223. https://doi:10.1164/ rccm.200408-1044SO

Salyers AA, Whitt DD, Whitt DD. 1994. Bacterial pathogenesis: a molecular approach. Washington, DC: ASM press. 1: p:260-268. https://doi:

Sampedro I, Parales RE, Krell T, Hill JE. 2015. Pseudomonas chemotaxis. FEMS Microbiology Reviews, 39(1): 17-46. https://doi:10.1111/1574-6976.12081

Sana TG, Berni B, Bleves S. 2016. The T6SSs of Pseudomonas aeruginosa strain PAO1 and their effectors: beyond bacterial-cell targeting. Frontiers in Cellular and Infection Microbiology, 6: 61.

Santajit S, Indrawattana N. 2016. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, (2016): 1-8. https://doi:10.1155/2016/2475067

Shannon KP, French GL. 2004. Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995–2000. Journal of Antimicrobial Chemotherapy, 53(5): 818-825. https://doi:10.1093/jac/dkh135

Shaver CM, Hauser AR. 2004. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infection and Immunity, 72(12): 6969-6977. https://doi:10.1128/IAI.72.12.6969-6977.2004

Shaw BG, Latty JB. 1982. A numerical taxonomic study of Pseudomonas strains from spoiled meat. Journal of Applied Microbiology, 52(2): 219-228. https://doi:10.1111/j.1365-2672.1982.tb04843.x

Shooter RA, Cooke EM, Faiers M, Breaden A, O’Farrell S. 1971. Isolation of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella from food in hospitals, canteens, and schools. The Lancet, 298(7721): 390-392. https://doi:10.1016/s0140-6736(71)90111-5

Sırıken B, Öz V. 2017. Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi Teknolojisi Dergisi, (18): 42-52.

Snyder LA, Loman NJ, Faraj LA, Levi K, Weinstock G, Boswell TC, Pallen MJ, Ala’Aldeen DA. 2013. Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. Euro Surveill, 18(42): 20611. https://doi:10.2807/1560-7917.es2013.18.42.20611

Song Z, Kong KF, Wu H, Maricic N, Ramalingam B, Priestap H, Scheper L, Quirke JME, Iby NH, Mathee K. 2010. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomed, 17(13): 1040-1046. https://doi:10.1016/j.phymed.2010.03.015

Spiers AJ, Buckling A, Rainey PB. 2000. The causes of Pseudomonas diversity. Microbiology, 146(10): 2345-2350. https://doi:10.1099/00221287-146-10-2345

Şahin R, Kaleli İ. 2018. Comparison of genotypic and phenotypic characteristics in biofilm production of Staphylococcus aureus isolates. Mikrobiyoloji Bülteni, 52(2): 111-112. https://doi:10.5578/mb.66773

Şen A, Halkman AK. 2006. Çiğ sütte Pseudomonas aeruginosa sayılması için yöntem modifikasyonları üzerine çalışmalar. Orlab On-Line Mikrobiyoloji Dergisi, 4(2): 2-13.

Turton JF, Turton SE, Yearwood L, Yarde S, Kaufmann ME, Pitt TL. 2010. Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. Clinical Microbiology and Infection, 16(8): 1111-1116. https://doi:10.1111/j.1469-0691.2009.03049.x

Uraz G, Çıtak S. 1998. Çeşitli yörelerden sağlanan çeşitli çiğ süt örneklerinden Pseudomonas’ ların izolasyonu ve dağılımı üzerine bir araştırma. Turkish Journal of Agriculture and Forestry, 22: 469-474.

Venturi V. 2006. Regulation of quorum sensing in Pseudomonas. FEMS Microbiology Reviews, 30(2): 274-291. https://doi:10.1111/j.1574-6976.2005.00012.x

Wei L, Wu Q, Zhang J, Guo W, Gu Q, Wu H, Wang J, Lei T, Xue L, Zhang Y, Wei X, Zeng X. 2020. Prevalence, virulence, antimicrobial resistance, and molecular characterization of pseudomonas aeruginosa isolates from drinking water in China. Frontiers in Microbiology, 11: 544653. https://doi:10.3389/fmicb.2020.544653

Weinstein RA, Gaynes R, Edwards JR, National Nosocomial Infections Surveillance System 2005. Overview of nosocomial infections caused by gram-negative bacilli. Clinical Infectious Diseases, 41(6): 848-854.

Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proceedings of the National Academy of Sciences, 100(13): 7907-7912. https://doi:10.1073/pnas.1231792100

Wu W, Jin Y, Bai F, Jin S. 2015. Pseudomonas aeruginosa. JMolecular Medical Microbiology, Academic Press. p:753-767.

Xu Z, Xie J, Soteyome T, Peters BM, Shirtliff ME, Liu J, Harro JM. 2019. Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion in Food Science, 26: 57-64. https://doi:10.1016/ j.cofs.2019.03.006

Zeng B, Wang C, Zhang P, Guo Z, Chen L, Duan K. 2020. Heat shock protein DnaJ in Pseudomonas aeruginosa affects biofilm formation via pyocyanin production. Microorganisms, 8(3): 395.

Zhao K, Li W, Li J, Ma T, Wang K, Yuan Y, Li JS, Xie R, Huang T, Zhang Y, Zhou Y, Huang N, Wu W, Wang Z, Zhang J, Yue B, Zhou Z, Li J, Wei YQ, Zhang X, Zhou X. 2019. TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nature Microbiology, 4(3): 459-469. https://doi:10.1007/s11426-021-1150-7

Zulianello L, Canard C, Köhler T, Caille D, Lacroix JS, Meda P. 2006. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infection and Immunity, 74(6): 3134-3147. https://doi:10.1128/IAI.01772-05




How to Cite

Tutun, S., & Yurdakul, Özen. (2023). Importance of Pseudomonas aeruginosa in Food Safety and Public Health. Turkish Journal of Agriculture - Food Science and Technology, 11(10), 2016–2026.



Review Articles