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 Water loss kinetics in osmotic dehydration of cone-shaped fruits and vegetables was 
modeled on the basis of diffusion mechanism, using the Fick’s second law. The model 
was developed by taking into account the influences of the fruit geometrical 
characteristics, initial water content of fruit, water diffusion coefficient in fruit, and the 
water concentration in hypertonic solution. Based on the obtained model, it was shown 
that the water diffusion coefficient and the initial water concentration of fruit have direct 
effects on the dehydration rate and also inverse influence on the dehydration duration. 

The geometrical parameters of fruit and water concentration in hypertonic solution 
showed direct effect on the dehydration duration as well as inverse effect on the 
dehydration rate. The presented model seems to be useful tool to predict the dehydration 
kinetics of cone-shaped fruit during osmotic dehydration process and to optimize the 
process prior to perform the experiments. 
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Introduction 

Osmotic dehydration is widely used to remove part of 
the water content of fruit without structure damages to 

obtain a product containing intermediate moisture with 

reduced water activity (Segu et al., 2006; Garcia-Segovia 

et al., 2010). It is a water removal process, which is based 

on immersing fruits or legumes in a hypertonic or osmotic 

solution, i.e. concentrated aqueous solution of soluble 

solids such as sugar, salt, sorbitol, and glycerol having 

higher osmotic pressure and lower water activity 

(Ohnishio and Miyawaki, 2005; Chenlo et al., 2006; 

Kaymak-Ertekin and Sultanoglu, 2000; Vega-Mercado et 

al., 2001).  

The use of osmotic dehydration in the food industry 
has several advantages in comparison to conventional 

dehydration processes, e.g. quality improvement in terms 

of color, flavor and texture, energy efficiency, packaging 

and distribution cost reduction, no chemical pretreatment, 

product stability, and retention of nutrients during storage 

(Bui et al., 2009). The rate of dehydration (water loss) 

during the osmotic dehydration depends upon factors such 

as: solution concentration, immersion time, solution 

temperature, size and geometry of the fruit, solution to 

fruit mass ratio and level of agitation or circulation of the 

hypertonic solution. A large number of recent 
publications have described both mathematically and 

experimentally the influence of these variables on 

dehydration kinetics and mass transfer rates during 

osmotic dehydration (Pisalkar et al., 2014; Sutar and 

Gupta, 2007; Moreira et al., 2007; Silva et al., 2014; Ispir 
et al., 2009; Alam and Singh, 2010; Zita et al., 2009; 

Simpson et al., 2015). Mass transfer modeling of osmotic 

dehydration is necessary for understanding the process as 

well as to develop design and control schemes. However, 

the complex structure of the fruit and the multiple 

processes involved during mass transfer between the fruit 

and the hypertonic solution makes the modeling of 

osmotic dehydration complex (Bui et al., 2009). 

Fick’s second law is usually applied to find an 

approximate solution, and the effective diffusivity of 

water in the tissue is used to account for the variation of 

the physical properties of the tissue as well as for the 
influence of the hypertonic solution characteristics and 

process variables (Kaymak-Ertekin and Sultanoglu, 2000; 

Segu et al., 2006; Garcia et al., 2007; Sirousazar et al., 

2009; Bui et al., 2009). In the models based on the Fick’s 

second law, the diffusion of water from the inside of the 

fruit to the surrounding hypertonic solution plays the 

major role in the osmotic dehydration. In this case, the 

concentration gradient of water between the inside and 

outside of the fruit acts as the driving force for the mass 

transfer of water and the rate of moisture loss (Sirousazar 

et al., 2009). Much work has been performed in 
developing mathematical models to predict the mass 

transfer kinetics of the osmotic dehydration process for 

the fruits having the simple geometric configurations, i.e. 

slab, cylinder and sphere (Sutar and Gupta, 2007; 
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Sirousazar et al., 2009).  Nonetheless, the lack of 

mathematical models is evident for predicting the osmotic 

dehydration of the other kinds of fruits having 

complicated shapes, such as cone-shaped fruits and 

vegetables (e.g. strawberries, carrot and pepper). 

The objective of this work is to model the water loss 

during the osmotic dehydration of cone-shaped fruits. The 

model is developed on the basis of Fick’s law by taking 

into account the influences of the geometrical 
characteristics and physical properties of the fruit, and the 

properties of the hypertonic solution. 

 

Mathematical Modeling  

 

Figure 1 shows a schematic two-dimensional view of 

a typical cone-shaped fruit with base radius of a and 

height of b. In order to study the dehydration kinetics of 

this fruit on the basis of the diffusion model, we should 

analyze the Fick’s second law in cylindrical coordinates.  

 

 
Figure 1 The geometrical dimensions of a typical cone-

shaped fruit. 

 

The below assumptions were used in the mathematical 

modeling:  

 The water diffusion from fruit into hypertonic 

solution is the dehydration rate controlling step rather 

than other phenomena such as tissue swelling. 

 The ratio of height to base radius of fruit is so high 
(b>>a), so the diffusion of water is assumed to be one 

dimensional, i.e. it occurs in r direction. 

 The water diffusion coefficient in fruit tissue (D) is 

constant and independent of concentration. 

 The concentration of water in hypertonic solution (C-

e) is constant, during the dehydration process (the 

hypertonic solution is assumed as an infinite source). 

 The initial concentration of water in fruit is C0. 

In this case, the concentration of water inside the fruit 

(0 ≤ r ≤ a and 0 ≤ z ≤ b) as a function of r and t can be 

determined by transient diffusion based on the Fick’s 

second law for the cylindrical coordinates: 

 
𝜕𝐶

𝜕𝑡
= 𝐷 (

𝜕2𝐶

𝜕𝑟2
+

1

𝑟
+

𝜕𝐶

𝜕𝑟
) (Eq.1) 

 
The initial and boundary conditions governing this 

system are:  

 

𝐶(𝑟, 0) = 𝐶0 (Eq.2) 

 

𝐶(𝑅(𝑧), 𝑡) = 𝐶𝑒 (Eq.3) 

 

𝐶(0, 𝑡) = 𝑓𝑖𝑛𝑖𝑡𝑒 (Eq.4) 

 

Where, 𝑅(𝑧) is the radius of fruit at the height of z. 
The Eqs.2 and 3 were written based on our assumptions 

and the Eq.4 is right because we know that the 

concentration of water in the center of fruit (r = 0) is not 

infinite and has a finite value.  

The Eqs.1-4 is a partial differential equation with non-

homogenous boundary conditions which could be 

converted to a problem with homogenous boundary 

conditions by defining a new function (𝑟, 𝑡) , as follows: 

 

𝑈(𝑟, 𝑡) = 𝐶(𝑟, 𝑡) − 𝐶𝑒 (Eq.5) 
 

Using the Eq.5, the Eqs.1-4 will found new forms in 

term of 𝑈(𝑟, 𝑡): 
 
𝜕𝑈

𝜕𝑡
= 𝐷 (

𝜕2𝑈

𝜕𝑟2
+

1

𝑟
+

𝜕𝑈

𝜕𝑟
) (Eq.6) 

 

𝑈(𝑟, 0) = 𝐶0 − 𝐶𝑒 (Eq.7) 
 

𝑈(𝑅(𝑧), 𝑡) = 0 (Eq.8) 

 

𝑈(0, 𝑡) = 𝑓𝑖𝑛𝑖𝑡𝑒 (Eq.9) 

 

The above initial and boundary conditions problem 

(Eqs.6-9) can be solved on the basis of the method of 

separation of variables. The final solution of the Eq.6 

using the boundary conditions (Eqs.8 and 9) is: 

 

𝑈(𝑟, 𝑡) = ∑ 𝐹𝑛𝐽0 (
𝛼𝑛𝑟

𝑅(𝑧)
)∞

𝑛=0 𝑒𝑥𝑝 (
−𝐷𝛼𝑛

2

(𝑅(𝑧))2
) 𝑡 (Eq.10) 

 

Where, 𝐹𝑛 are constants, J is the Bessel function of 

first kind and 𝛼𝑛 are the roots of below equation: 

 

𝐽0(𝛼𝑛) = 0, 𝑛 = 0, 1, 2, 3, … .. (Eq.11) 

 

Applying the initial condition (Eq.7) in Eq.10, gives 

the constants 𝐹𝑛 as: 
 

𝐹𝑛 =
2(𝐶0−𝐶𝑒)

(𝑅(𝑧))2𝐽1
2(𝛼𝑛)

∫ 𝑟𝐽0 (
𝛼𝑛𝑟

𝑅(𝑧)
)

𝑅(𝑧)

0
𝑑𝑟 (Eq.12) 
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In order to withdraw the effect of the position variable 

z on the model (as one of the modeling assumptions) and 

also to calculate the integral in Eq.12, an average value 

for 𝑅(𝑧) is considered in domain 0 ≤ z ≤ b as follows: 

 

�̅� =
∫ 𝑅(𝑧)𝑑𝑧
𝑏
0

𝑏
 (Eq.13) 

 

𝑅(𝑧) could be replaced by: 

 

𝑅(𝑧) = 𝑎𝑧/𝑏 (Eq.14) 

 

Inserting Eq.14 in Eq.13 and integrating yields the �̅� 

as: 

 

�̅� = 𝑎/2 (Eq.15) 
 

Inserting Eq.15 in Eq.12, after integrating and 

mathematical simplifications gives the values of 𝐹𝑛 as: 

 

𝐹𝑛 =
2(𝐶0−𝐶𝑒

𝛼𝑛𝐽1(𝛼𝑛)
 (Eq.16) 

 

Finally, putting Eq.16 in Eq.10 and using Eq.5, the 

water concentration function inside the fruit (i.e.𝐶(𝑟, 𝑡)) 
will be obtained as: 

 

𝐶(𝑟, 𝑡) = 𝐶𝑒 + 2(𝐶0 − 𝐶𝑒)∑
𝐽0(

2𝛼𝑛𝑟

𝑎
)

𝛼𝑛𝐽1(𝛼𝑛)
∞
𝑛=1 𝑒𝑥𝑝 (

−4𝐷𝛼𝑛
2

𝑎2
𝑡) (Eq.17) 

 

The rate of water diffusion from the fruit (J) is given 

by the Fick’s First law: 
 

𝐽 = −𝑆𝐷 [
𝜕𝐶(�̅�,𝑡)

𝜕𝑟
] (Eq.18) 

 

Where, S is the surface area of the cone:  

 

𝑆 = 𝜋𝑎√(𝑎2 + 𝑏2) (Eq.19) 

 

The cumulative amount of removed water from fruit at 
time t (Mt) could be determined by the below equation:  

 

𝑀𝑡 = ∫ 𝐽𝑆𝑑𝑡
𝑡

0
 (Eq.20) 

 

Using the Eqs.17-20, 𝑀𝑡 is achieved as: 

 

𝑀𝑡 = 𝜋𝑎2√(𝑎2 + 𝑏2)(𝐶0 − 𝐶𝑒)∑
1

𝛼𝑛
2

∞
𝑛=1 [1 − 𝑒𝑥𝑝 (

−4𝐷𝛼𝑛
2

𝑎2
𝑡)](Eq.21) 

 

The total initial amount of water (𝑀∞) inside the fruit 

is expressed as: 

 

𝑀∞ = 𝐶0 (
𝜋𝑎2𝑏

3
) (Eq.22) 

 

Finally, the fractional remove of water from fruit to 

the hypertonic solution at time t can be obtained by 

dividing Eq.21 to Eq.22: 

 
𝑀𝑡

𝑀∞
=

3√(𝑎2+𝑏2)(𝐶0−𝐶𝑒)

𝑏𝐶0
∑

1

𝛼𝑛
2

∞
𝑛=1 [1 − 𝑒𝑥𝑝 (

−4𝐷𝛼𝑛
2

𝑎2
𝑡)] (Eq.23) 

Results and Discussion  

 

Based on the developed mathematical model (Eq.23) 

the water loss rate and dehydration kinetics of the cone-

shaped fruits during the osmotic dehydration could be 

predicted. The osmotic dehydration curves (Mt/M∞ versus 

t) were plotted by considering the effects of fruit 

geometrical characteristics as well as operating conditions 

including the base radius and height of fruit, water 
diffusion coefficient in fruit, initial water concentration in 

fruit, and water concentration in hypertonic solution. 

Figure 2 demonstrates the effect of the base radius of 

cone-shaped fruits on the osmotic dehydration kinetics. 

The curves were plotted at constant values of b=35 mm, 

D=10-9 m2/s, C0=45 kmol/m3 and Ce=20 kmol/m3 for a 

cone-shaped fruit with various base radius between 5-25 

mm. As seen, the presented model shows that a cone-

shaped fruit having smaller base radius exhibits higher 

value of Mt/M∞ at any arbitrary time of dehydration in 

comparison with the thicker one. In other words, it 

implies that the fruits with smaller base radiuses will be 
dried more rapidly than thicker ones. For instance, the 

fruit with a=25 mm reaches to dehydration level of 

Mt/M∞=0.25 nearly in 3 h, while this duration for the fruit 

having the base radius of 10 mm is about 50 min. 

 

 
Figure 2 The effect of base radius of cone-shaped fruits 

on osmotic dehydration kinetics 

 

 

 
Figure 3 The effect of height of cone-shaped fruits on 

osmotic dehydration rate 
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Figure 4 Osmotic dehydration curves of a cone-shaped 

fruit at different values of D 

 

 
Figure 5 Dehydration kinetics of a cone-shaped fruit with 

different initial water content 

 

 
Figure 6 The effect of the water concentration in 

hypertonic solution on the osmotic dehydration of cone-

shaped fruits 

 

The influence of another geometrical characteristic of 

cone-shaped fruits (i.e. b) on the osmotic dehydration 

process has been exhibited in Figure 3. The curves in 
Figure 3 were plotted using constant values for 

parameters, i.e. a=15 mm, D=10-9 m2/s, C0=45 kmol/m3 

and Ce=20 kmol/m3. A similar dehydration trend like the 

base radius (Figure 3) is observed for b. As can be seen, 

the height of the cone-shaped fruit has inverse effect on 

its dehydration kinetics. The fraction of water removed 

from a cone-shaped fruit having height of 35 mm after 5 h 

of initiating the osmotic dehydration process is 0.39 

while, this value for the same fruit with height of 15 mm 

at the identical conditions as well as the same duration is 

0.51.  

Figure 4 shows the effect of the water diffusion 

coefficient on the dehydration kinetics of a cone-shaped 
fruit having the radius of 15 mm, the height of 35 mm and 

initial water concentration of 45 kmol/m3 in a hypertonic 

solution with water concentration of 20 kmol/m3. It can be 

seen that the fraction of water removed the fruit has 

strong dependency to the diffusion coefficient, in a 

manner which increasing the value of D (which can be 

achieved by increasing the temperature of process), 

causes the fruit to reach to the higher equilibrium levels in 

a shorter period. On the other hand, Figure 4 reveals that 

the water migration in the more permeable fruits (fruit 

having higher value of D) occurs faster that those with 

lower permeability.  
The effect of the initial water content of cone-shaped 

fruits on osmotic dehydration rates was investigated on 

the basis of presented model and shown in Figure 5. The 

curves in Figure 5 were plotted using constant values for 

parameters, i.e. a=15 mm, b=35 mm, D=10-9 m2/s and 

Ce=20 kmol/m3. A direct relationship between the time 

required reaching to a specified level of dehydration and 

the initial water concentration of fruit is observed. This 

could be attributed to the higher driving force for mass 

transfer (higher water concentration gradient between 

fruit and hypertonic solution) in fruits with higher initial 
water content. 

Figure 6 exhibits the osmotic dehydration curves of a 

cone-shaped fruit with radius of 15 mm, height of 35 mm, 

initial water concentration of 45 kmol/m3 and water 

diffusion coefficient of 10-9 m2/s in different hypertonic 

solutions with water concentration of 10, 15, 20, 25, and 

30 kmol/m3. As seen in Figure 6, the presented model 

shows that the water concentration in hypertonic solution 

has drastic effect on the osmotic dehydration of cone-

shaped fruits. The fraction of water removed from fruit at 

a specified time is increased by decreasing the water 
concentration in hypertonic solution (i.e. by concentrating 

the solution). For instance, the aforementioned cone-

shaped fruit reaches to a dehydration level of Mt/M∞=0.66 

in 6 h using a hypertonic solution with water 

concentration of 25 kmol/m3, while this level is reduced 

to half in the same duration, if we use another hypertonic 

solution with water concentration of 10 kmol/m3. 

 

Conclusion 

 

In this work, a mathematical model on the basis of 

diffusion mechanism was presented to predict the osmotic 
dehydration of cone-shaped fruits and vegetables in 

hypertonic solutions. The model gives the fractional 

removal of water from fruit to the hypertonic solution 

versus time as a function of geometrical parameters of the 

fruit as well as dehydration process conditions, such as 
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the base radius and height of cone-shaped fruit, water 

diffusion coefficient in fruit, initial water concentration of 

fruit, and water concentration in hypertonic solution. The 

effect of the above mentioned parameters on dehydration 

kinetics of cone-shaped fruits was investigated using the 

presented model. The results showed that the water 

diffusion coefficient and the initial water concentration of 

fruit have direct effects on the dehydration rate and also 

inverse effect on the dehydration duration. On the other 
hand, the geometrical parameters of fruit (i.e. base radius 

and height) and water concentration in hypertonic 

solution showed direct effect on the dehydration duration 

as well as inverse effect on the dehydration rate. Using 

the developed model one can predict the osmotic 

dehydration kinetics for cone-shaped fruits and vegetables 

without performing experiments and also can design 

optimum conditions for osmotic dehydration process. It 

should be noted that the presented model can be 

recognized as an approximated tool to predict the osmotic 

dehydration process of normal cone-shaped fruits and 

vegetables, such as strawberries, where the values of the 
height and base radius of fruit are comparable. But for the 

cone-shaped fruits and vegetables having the high ratio of 

height to base radius (b>>a), e.g. carrot and pepper, where 

the mass transfer can be assumed one dimensional (in 

radial direction), the proposed model may give good 

approximation for osmotic dehydration kinetics. 

However, experimental study is suggested for the 

validation of the developed model in this work. 
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