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 Due to its nutritional and economic value, the tomato is considered one of the main 
vegetables in terms of production and consumption in the world. For this reason, an 

important case study is the fruit maturation parametrized by its mass loss in this study. 
This process develops in the fruit mainly after harvest. Since that parameter affects the 
economic value of the crop, the scientific community has been progressively approaching 
the issue. However, there is no a state-of-the-art practical model allowing the prediction 
of the tomato fruit mass loss yet. This study proposes a prediction model for tomato mass 
loss in a continuous and definite time-frame using regression methods. The model is 
based on a combination of adjustment methods such as least squares polynomial 
regression leading to error estimation, and cross validation techniques. Experimental 

results from a 50 fruit of tomato sample studied over a 54 days period were compared to 
results from the model using a second-order polynomial approach found to provide 
optimal data fit with a resulting efficiency of ~97%. The model also allows the design of 

precise logistic strategies centered on post-harvest tomato mass loss prediction usable by 
producers, distributors, and consumers.  
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Introduction 

The ripening process of the tomato fruit during post-

harvest implies dramatic physical changes in color, shape, 
mass, area and volume. It also classifies it as a climacteric 

fruit, meaning that post-harvest tomatoes continue to ripe 

(Alexander and Grierson, 2002). At a harvest point, 

tomatoes are green and hard to the touch. But 

manipulation leading to the end consumer causes 

deterioration conducing to what is considered their 

maximum desirable ripening condition (Liu et al., 2015). 

Tomatoes are one of the most important climacteric fruits 

produced in Mexico, representing 20% of the world’s 

export volume (Mapes and Basurto, 2016). In the last few 

years, Mexico has increased its tomato production by 
34%, going from 2.086 million tons in 2000 to 2.8 million 

tons in 2015 (Domis and Papadopoulos, 2002). This is 

mainly due to the increasing use of protected agricultural 

systems such as greenhouses. These have made all around 

seasonal tomato production possible (Putra and Yuliando, 

2015). 

During post-harvest, a great amount of product is lost 

to physical, chemical and mechanical processes. 

Companies can then experience limitations in market 

supply, resulting in economic losses for them and 

negative affectation to the end consumer. Furthermore, in 

developing countries like Mexico there is a gap between 

market and infrastructure, and product losses can fluctuate 
from 25 to 50% of the harvest. It has been found that 

tomato losses are due to two main factors: total mass loss 

and undesirable short ripening process time. These cause 

extreme fruits softening, leading to it being considered 

waste (Payasi and Sanwal, 2010). These factors represent 

significant damage for producers, distributors and final 

consumers. Consequently, both agricultural industry and 

market could benefit with better understanding and 

predictive knowledge on relevant timelines and other 

aspects of the tomato fruit ripening process.  

Due to its economic importance and fast ripening 
process, tomato is biochemically and physically studied 

by scientists. In this context, the need arises to better 

analyze and predict its mass loss and ripening process 

times during post-harvest. Better management of ripening 

times will reward producers, distributors and end 

consumers economically (cash and product savings) and 

in terms of improved quality (fruit freshness) at the shelf. 

There is a significant number of studies related to 

biochemical processes taking place in post-harvest fruits. 

For example, Ponce-Valadez et al., (2016), evaluated by 

biochemical analysis the effects of refrigerated storage 
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over tomato fruit. Kant et al., (2016), studied the 

biochemical characteristics of the tomato fruit when 

treated with different concentrations of salicylic acid 

(SA). He noted that the treatment delayed ripening and 

deterioration of the fruit. Wabali et al., (2016), 

biochemically evaluated the effects of potassium 

permanganate treatment at different concentrations in 

chilled tomatoes, under a color and texture analysis of 

fruit. He observed that the potassium permanganate had a 
preservative effect on the color and texture of refrigerated 

tomatoes. Bhandari and Lee, (2016), biochemically 

studied changes tomato fruit ripening, based on the 

dependence of antioxidants, color attributes and 

antioxidant activity of the tomato fruit in 45 post-harvest. 

In contrast, there are just a few studies related to 

physical parametric changes in fruits during post-harvest. 

Examples are Kvikliene et al., (2006), who studied 

changes in the quality parameters of the apple fruit with 

the purpose of estimating the optimum harvest time. Liu 

et al., (2007), used an adapted 50-tomato growth model to 

predict carbon and water accumulation in peaches. Main 
adjustments were based on the decrease of the cellular 

wall during the fruits development and the negative 

influence of its initial mass/weight. Bornn et al., (2010), 

computationally analyzed the efficiency of mathematical 

methods like sensibility analysis and crossed validity, 

comparing them with the Monte Carlo sequential method 

based on Markov chains. Li et al., (2013), studied the 

effects of mechanical damage that tomato endures during 

storage. He observed that both the storage technique and 

time had a significant effect on the mass/water loss of the 

fruit. De Oliveira et al., (2014), evaluated a prediction 
model of the internal features of three different fruits 

using the NIRS (Near Infrared Spectroscopy) technique 

and quimio-metric methods with least squares. Kawamoto 

and Kabashima, (2016), applied based on the cross 

validation method for identifying macroscopic temporary 

structures, and hidden data in modular networks by 

predicting the minimum data spread error in disperse 

networks. Pila et al., (2010), studied the effects of 

physical-chemical treatments in the post-harvest tomato. 

De Ita et al., (2015), determined the dehydration curves of 

fruits and vegetables under equal conditions using DTA 
(Differential Thermal Analysis) and TGA (Thermal 

Gravimetric Analysis). Correia et al., (2015), evaluated 

temperature, time and tomato thickness effects during the 

adiabatic drying dehydration process in industrial 

conditions. 

Numerical prediction models are simplified 

representations of reality applied to predictive processing 

by sets of hypotheses. They are used for explaining 

behavior patterns observed in the real world within 

different contexts. The dependent variable of interest is 

explained and predicted based on their own history and 

history of other related variables. Applying different types 
of functions to approximate the behavior and properties of 

the variable of interest requires careful study and plays a 

key role in the resulting predictive model capacity 

(Faraway, 2016). Prediction models present errors, which 

can be of different types: specification errors, 

approximation errors and estimation errors (Fuller, 2009). 

In this study, the framework of predictive models is used, 

and interest centers on the getting of one regarding the 

post-harvest mass loss prediction of the tomato fruit and 

its approximation error respect to the experimental data. 

In this study, the individual mass of fifty tomatoes, 

taken from a protected agricultural environment located in 

Colón, Querétaro, México was analyzed during the entire 

post-harvest ripening process. Each specimen was 
harvested at 8:30 am on the 13th of April 2016 and its 

mass measured every 24 hours during a 54 days period. 

With the data obtained from that experimental phase, a 

timeline of the ripening process was established. That 

data was in turn used to develop a model to predict the 

mass loss of a tomato during the ripening process until 

desirable maturity. The model is based on algebraic 

polynomial procedures, least squares and crossed 

validation, all within the context of applied artificial 

intelligence algorithms. Its main objective is to be used as 

a systematic tool for producers and consumers to predict 

mass loss and assess the correct ripening condition of the 
fruit. 

This paper is divided in six sections. After the 

introductory section, second section describes the analysis 

performed on the sample and the processes conducted to 

acquire the initial experimental data, as well as a 

description of related precedent studies using least 

squares and crossed validation. Third section describes 

measurements implied and follows up methodology 

developed to extract the approximation model by 

automatic means. Fourth section explains the 

mathematical formulas employed to develop the 
approximation model and describes the learning and 

evaluating methods using the experimental data extracted 

from it. Fifth section presents a comparison between the 

results of the analysis and the experimental behavior of 

the model. Finally, sixth section presents the conclusions 

of this research. Comments on prospective related 

research based on the here proposed are provided as well, 

since the proposed mass loss prediction model presented 

an efficiency of ~97%. 

 

Materials and Methods 
 

For this study a sample of 50 tomatoes off the better 

ball variety was harvested on the 13th of April 2016 at 

8:30 am. The sample was obtained from a greenhouse 

property of the High Group Farm Company located in the 

town of Colón, municipality of Ajuchitlán, state of 

Querétaro, México (latitude of 20°41’04.58” and 

longitude 100°00’23.457”). The sample was stored in a 

Samsung domestic refrigerator. The storage, distribution 

of the sample was divided in three sections: two with 24 

fruits and the last one with 2 fruits. The storage 
temperature and relative humidity was kept controlled at 

14°C and 39% respectively, while the environmental 

temperature and relative humidity varied between 23–

29°C and 30–34% respectively. A Taylor digital precision 

scale (TE32C model) was used for the daily registry of 

each specimen’s mass, 120 carefully labeled. 
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Data Collections 

The initial mass figure for the entire sample was about 

11.9685 kg, and the average mass per tomato was about 

0.2443 kg. Measurements were repeated every 24 hours 

for 54 consecutive days. The period for mass 

measurement and its registry was from 8:00 pm until 1:00 

am. With the obtained figures, a database was created in 

order to develop a timeline describing the mass behavior 

of the total sample, but measurements were performed on 

each specimen as well, allowing for individual mass 

behavior time lines too. Figure 1(a), presents the total 

mass average sample timeline behavior during the 54 days 

the experiment lasted. Complementary, Figure 1(b) 

presents a mass loss timeline for each individual tomato 

constituting the sample. From Figures 1, it can be 

observed that the behavior of the curves is similar and 

independent of the number of fruits of the sample taken. 

 

 

 
(a) (b) 

Figure 1 (a) Average mass parameter of the total sample vs. experimental time in days, (b) Mass parameter per fruit vs. 

experimental time in days. 

 

 
Figure 2 Proposed prediction mass loss model diagram 

 

Proposed Methodology 

The methodology proposed to develop a mass loss 

prediction model for the tomato fruit is divided into three 

stages. The first stage is the pre-learning of the data 
treatment model to be developed, second stage its 

learning, and third stage its testing in order to obtain the 

optimal mass loss predictive model. The general data 

treatment model developed in this study is described in 

Figure 2. 

 

Model Pre-Learning Stage 
According to the methodology in Figure 2, pre-

learning stage starts with data collection of the tomato 
mass parameter during a determined time period. This 
was conducted for each individual tomato of the sample, 
obtaining a data set with the form 
(𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) where 𝑥𝑛  represents the 

experimental time length and 𝑦𝑛  the registered mass of the 
fruit during that period. Data obtained was represented 
graphically in order to study mass behavior and establish 
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timelines from fruit harvest to the end of the optimal 
ripening process and beginning of fruit discarding. These 
time lines can be observed in their both average mass of 
the sample and in individual form, in the figures 1(a) and 
1(b) respectively. The data was then subjected to a 
mathematical process based on least squares linear 
approximation. The Weierstrass approximation theorem 
Burden and Faires (2011) is applied as follows: 

Assume that 𝑓 is defined and continuous in [𝑎, 𝑏], for 
every 𝜀 > 0, there exists a polynomial 𝑃(𝑥), with the 

property that |𝑓(𝑥) − 𝑃(𝑥)| < 𝜀, ∃𝑥 ∈ [𝑎, 𝑏]. Taking into 

account that, we have a set of continuous functions f(x) of 
the type, 

 

f(x)=anxn+an-1xn-1+an-2xn-2+…+a2x2+a1x1+a0 (1) 

 
where 𝑛 is a non-negative integer number and represents 

the degree of the polynomial to be used. 𝑎0, 𝑎1, … , 𝑎𝑛  are 
constants that belong to a set of real numbers. Therefore, 

Figure 1 represents a set of functions 𝑓(𝑥), whose data 
(𝑥𝑖 , 𝑦𝑖) are the real mass and time values obtained from 
experimentation. Then we look for a polynomial of 

degree 𝑛 that approximates the behavior of the real data 
of the mass of the fruit given by 

 

P(x)=ao+a1x+…anxn    (2) 

 

where 𝑃𝑛(𝑥), represents the least squares polynomial 

approximation of degree 𝑛 to be found. Since 

𝑎0, 𝑎1, … , 𝑎𝑛−1  are unknown constants, Shalev-Shwartz 
and Ben-David (2014), equation (2) is applied in a dataset 
of degrees 𝑛 = 1,2, … ,10, with which a set of 

polynomials of the type 𝑃(𝑥) is obtained. Finally, we 
obtain the least square approximation error of the set of 

functions 𝑃(𝑥) by means of 

 

ε=√
∑ fn(xk)-(yk)2n

i=1

n
    (3) 

 

where 𝑛 is the total number of data points, and xi,yi are 
the days of testing and mass values respectively. Based on 
the results obtained from equation (3), a comparison of 
the values of the minimum mean square error of the set of 

polynomials 𝑃(𝑥) is conducted in order to obtain an 

optimal second-order polynomial 𝑃(𝑥), as well as its 

corresponding numerical coefficients 𝑎0, 𝑎1, 𝑎2 . 
 
Learning Stage 
Crossed validation method is applied to validate the 

proposed mass loss model. This method implies dividing 
the experimental data set into two aleatory parts (Witten 
et al., 2011). The first one is used for model learning and 
the second is the data set upon which the model validation 
is conducted. This data division is based on the fact that 

1 𝑛⁄  is the probability that an element of the experimental 
data set (i.e., the mass of a specific tomato on a particular 
day) is considered to pertain to the validation set. Thus, in 
equation: 

 

(1- 1 n⁄ )
n
     (4) 

where 𝑛 represents the number of independent 
experimental values for the masses of tomatoes as 
registered in the timeline of the experiment (54 days). 
Each of them can be considered or not to pertain to the 
learning set or the validation set. Accordingly, 1 − 1 𝑛,⁄  
represents the probability that the mass of a specific 
tomato on a particular day will not be considered to 
pertain to the validation set. Then, (1 − 1 𝑛⁄ )𝑛 is the 
probability that of the 𝑛 available independent 
experimental values, approximately 36% of them will be 
used for validation while the rest is used for learning. It 
should be noted that this property is independent of the 
size of 𝑛. Therefore, for the present methodology, a 
sample of size 𝑛 = 54 will conduce to the same data 
division as one of 𝑛 = 500 or 𝑛 = 1000. In this context, 
the timeline extension of the experiment (𝑛 =
54 𝑑𝑎𝑦𝑠) was determined by considering the period of 
time after which tomatoes start to be considered waste 
because their mass reduces in average ~25% (see Figure 
1(a)), in conjunction with other undesirable characteristics 
that begin to appear such as skin wrinkling. The actual 
size of the sample in terms of the number of fruits was in 
our case determined for a sample large enough to reflect 
the time independent variation of the mass parameter per 
fruit, as shown in Figure 1(b), which was of ~25% as 
well. 

Thus, one gets an estimated forecast error for all 
available observations and the possibility to interactively 
adjust the model for different combinations in the 
selection of learning data sets and conducted validations. 
With the K subsamples (K-fold) approach employed in 
this study, we consider subsets of the initial data set in 
order to obtain an estimate of the prediction error for each 
observation available. This is achieved by dividing the 
observations in 𝐾 = 3 aleatory sub-samples of 
approximately equal size amounting to 70% of the 
original data to construct the model, test it within the 
remaining 30% subsample, and then repeat (iterate) the 
process 2 times more (for a total of 3) exhausting the 
possible arrangements of the sub-samples. The data used 
for the learning stage of the proposed model was the one 
gathered in the experimental phase as described in section 
2. Figure 3 presents a diagram of the total data set, which 
consists of 54 observations in total. 

Cross-validation method is applied with the option of 
K-subsamples, where 𝐾 = 3 subsets were taken to 
develop the learning of the mass loss model. The data set 
was divided in 3 subsamples amounting to 70% of the 
total set, i.e., 38 observations of 54, as shown in Figure 4. 
The number of subsets is shown in Figure 5, as well as the 
arrangement of the data sub-sets used for the development 
of the learning process. For the first data sub-set taken 
was the one with 𝑛 = {1, … ,38}, for the second sub-set 
with 𝑛 = {9, … ,46}, and for the last subset with 𝑛 =
{17, … ,54}. 

 
Testing Stage 
For testing or validating the data obtained from the 

learning stage (the coefficients of the mass loss prediction 
model), the same procedure as in that first stage is 
developed. But this time the remaining data sub-sets were 
used, i.e., the remaining thirty percent of the total data set, 
equivalent in each iteration to 16 of the 54 registries 
originally gathered. 
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Figure 3 Total data-set 

 

 
Figure 4 𝐾 =  3 subsets employed 

 

 
Figure 5 Learning data subsets used for mass loss model development 

 

 
Figure 6 Data subsets used to test/validate the mass loss model 

 

 
(a) (b) 

Figure 7 (a) Environment temperature, (b) Environment relative humidity 

 

Figure 6 presents the distribution of the data used for 

the testing stage in 𝐾 = 3 subsets. For the first data sub-

set used was the one with 𝑛 = {39, … ,54}, for the second 

sub-set with 𝑛 = {1, … ,8} ∪ {47, … ,54}, and for the last 

sub-set with 𝑛 = {1, … ,16}. 

 

Results and Discussion 

 

During the experimentation phase, mass loss was 

observed accompanied by other changes which are 

beyond the scope of this paper. Results obtained in 230 

accordance with the data treatment process described in 
Figure 2 are presented. 

 

Pre-Learning Stage Results 

For the experiment conducted, temperatures and 

relative humidities were between 22–29°C and 31–34% 

respectively. These are typical for tomato harvest and 

post-harvest management within the central region of 

México and specific to a farm located in the vicinity of 
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the city of Querétaro, México. Please, see Figures 7(a) 

and 7(b). 

Figure 1(b) shows the individual mass loss of each 

specimen. That data was used to calculate the percentage 

of daily mass loss for the entire sample, as reported in 

Figure 8(a). At the beginning of the experiment (day 1) no 

mass loss 240 was considered, and this value also 

represents the harvest date of the specimens. At the end of 

the experiment (day 54) the mass of the sample presented 
a 64.51% change respect to its baseline. 

With the data described in section 2, the numerical 

coefficients of the polynomial functions of degree 

𝑖 = 1, … ,10 from equation (1) were calculated. These are 

presented in Table 1. With them, applying the equation 

(3), the mean square error between experimental data and 

model results was calculated. Figure 8(b) shows the error 

behavior in respect to the polynomial degree. In it, one 

can also notice how error values reach a stable plateau 

from polynomials of the second to the fourth degree. 

Based on these results, and preferring those lower 

polynomial degrees instead of the eight to the tenth 

degree where there’s another stable plateau for the mean 

square error, the second degree polynomial approach is 

chosen as the basis of the prediction mass loss model: 

 

f(x)=a2x2+a1x+a0    (5) 

 

where the unoptimized numerical coefficients for the 

entire sample are: 
 

a2=-2.7867E-6,  a1=-1.347E-3,  a0=0.2615 (6) 

 

 

Table 1 Numerical coefficients 

D a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

10 0.2634 
-2.0661 

E-3 

-1.2553 

E-5 

1.9789 

E-6 

-2.2096 

E-5 

1.0547 

E-7 

-2.3405 

E-9 

1.3507 

E-11 

3.8791 

E-13 

-7.3922 

E-15 

3.8269 

E-17 

9 0.2633 
-0.1915 

E-3 

-7.5516 

E-5 

3.1944 

E-5 

-3.4988 

E-6 

1.874 

E-7 

-5.591 

E-9 

9.4628 

E-11 

-8.4906 

E-13 

3.1319 

E-15 
 

8 0.2639 
-2.5568 

E-3 

1.4925 

E-4 

-3.758 

E-6 

-4.4893 

E-7 

3.5436 

E-8 

-1.0427 

E-9 

1.4158 

E-11 

-7.3924 

E-14 
  

7 0.2647 
-3.3300 

E-3 

3.7103 

E-4 

-3.1889 

E-5 

1.4186 

E-6 

-3.41686 

E-8 

4.2266 

E-10 

-2.1057 

E-12 
   

6 0.2633 
-2.2314 

E-3 

1.2164 

E-4 

-7.5866 

E-6 

2.2516 

E-7 

-3.1941 

E-9 

1.7313 

E-11 
    

5 0.2626 
-1.7960 

E-3 

4.6779 

E-5 

-2.2719 

E-6 

4.5915 

E-8 

-3.3742 

E-10 
     

4 0.2618 
-1.4072 

E-3 

-8.9999 

E-7 

7.2048 

E-9 

-4.80715 

E-10 
      

3 0.2619 
-1.4307 

E-3 

9.813 

E-7 

-4.5673 

E-8 
       

2 0.2615 
-1.347 

E-3 

-2.7867 

E-6 
        

1 0.2629 
-1.5003 

E-3 
         

D: Degree polynomial 

 

 

 
(a) (b) 

Figure 8 (a) Average mass loss vs experimental time in days, (b) Mean square error vs polynomial degree 
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Learning Stage Results 

Having chosen a second degree polynomial as the one 

to build the mass loss prediction model upon (equation 5), 

we conduct the learning stage to obtain optimized 

numerical coefficients for each of the 𝐾 subsets. 

Coefficients obtained are shown in Table 2. 

 

Testing Stage Result 
Once defined the numerical coefficients of the 

learning stage shown in Table 2, these apply to the testing 

stage for validation of the model data. In sequence: the 

normalization of the average weight of the tomato sample 

was performed, as presented in Figure 9(a). Then, that 

data is compared to the cross-validation results in both 

Table 3 and Figure 9(b) where we see a comparison of 

our model against the data obtained from 

experimentation. 

 

Mass Loss Model Results 

With the results obtained from the testing stage and 
summarized on Table 3 and Figure 9(b), we can 

appreciate that the best subset to approach the 

experimental data is the one with 𝐾 = 2 because it has the 

least approximation error (2.45%) of the global exercise. 

Therefore, the optimal mass loss prediction model in the 

form of equation 5 is given by the following optimal 

coefficients for an approximate data acceptance rate of 

~97%: 

 

a2=-4.11907E-5,  a1=-3.28077E-3,  a0=0.99515521 (7) 
 

Conclusions 
 

The marketing process of tomato fruit in Mexico 

requires several logistical steps in order to bring fresh 

fruits from the harvest to the consumer. Depending on the 

market to which it is directed (national or international), 

the post-harvest handling of the tomato will include: 

loading, transportation, reception, storage, sorting and 

sale. There are few cases in which the agricultural 

producer has a direct connection with supermarkets, food 

processing companies or end consumers. In the case of 

the internal or national market there are two main 

marketing channels for tomatoes: in the first one, the 
producer destines its packaged production to supply 

centers, self-service stores and processing companies to 

finally distribute it to consumers. In the second one, 

intermediaries collect the farmer's output and send it to 

local markets and warehouses. On the other hand, in the 

international market, the Mexican tomato producers send 

their packed production to a broker who is in charge of 

channeling it into self-service stores and distributors 

which make it arrive to the foreign consumer. The 

packaging is usually made in cardboard boxes according 
to size, color and quality of the fruit. The most common 

presentation of packaging for the international market, is 

a cardboard box with capacity for 33 kg of fruit. In the 

internal market, the fruits are packed in cartons with a 

capacity for 13 kg of fruit. The boxes packed product are 

arranged in stowage using wooden pallets and plastic 

strap to hold them and support the transportation, usually 

in refrigerated trailer. These are sent to different 

distribution points such as: central city markets, 

commercial chains, local markets, supermarkets, among 

others. Subsequently, the fruit is stored in refrigerated 

containers pending their sale or final consumption. In a 
tomato-consuming country like Mexico, the purchase and 

sale of the fruit by wholesale or retail at any point of 

distribution is offered based on the mass of the fruit 

(kilograms). During cooled post-harvest storage time, the 

tomato fruit suffers a loss of mass, as well as undesirable 

loosening and softening of the fruit. This causes waste of 

product, leading to considerable economic losses. In order 

to find an angle to this problem, a model of prediction of 

loss of mass of the tomato fruit in post-harvest was 

developed. The model provides a useful tool for both 

producers and consumers, because it allow them to 
establish optimization parameters for the purchase, sales, 

processing and consumption of the fruit. That is, the 

model allows producers to estimate the cost-benefit of 

product marketing tomato based on processing time. On 

the other hand, the model also allows the final consumer 

to estimate the maximum durability time of the product 

and make a better use of it, and supermarket chains to set 

time limits on product durability for sale. Near this limit, 

if the product has not been marketed yet, it could be sent 

to food processing companies, avoiding fruit waste. In a 

word, the model helps to optimize the post-harvest 
logistical managing of the fruit throughout the marketing 

chain.  

 

 

Table 2 Optimized coefficients obtained from learning stage 

Description a2 a1 a0 

Subset K = 1 -3.80182E-05 -0.003261324 0.995263397 

Subset K = 2 -4.11907E-05 -0.00328077 0.99515421 
Subset K = 3 -5.61685E-05 -0.002789021 0.993191135 

 
Table 3 Approximation error obtained from testing stage 

Description a2 a1 a0 Approximation Error 

Total approximation model -4.87504E-05 -0.00308615 0.994152511 2.66% 

Subset K = 1 -3.80182E-05 -0.003261324 0.995263397 2.79% 

Subset K = 2 -4.11907E-05 -0.00328077 0.99515421 2.45% 

Subset K = 3 -5.61685E-05 -0.002789021 0.993191135 2.75% 
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(a) (b) 

Figure 9 (a) Tomato sample normalized mean mass vs experimental time in days, (b) Comparison of approaches by 

cross-validation 

 

In summary, the post-harvest mass loss prediction 

model for the tomato fruit developed in this paper 

presented a high accuracy efficiency in terms of relative 

percentage total sample mass loss (97.55%) and low 

approximation error (2.45%) when compared to 
experimental data. That was achieved by means of a 

second order polynomial approximation to the 

experimental data obtained as described in previous 

sections. Therefore, the post-harvest tomato mass loss 

prediction model developed here can be a useful tool for 

both producers and consumers to better manage post-

harvest market logistics challenges. In this context, the 

model could allow producers and consumers to reduce the 

economic losses that affect the tomato during the ripening 

process and marketing. Moreover, this basic methodology 

to construct the mass loss model can also be applicable to 
other fruits with similar climacteric characteristics such as 

mango, banana, pear, peach, apricot, apple, avocado, etc. 

 

Future Work 

Among the side results of this study there is a database 

with dimensional parameters such as area, diameter 

(longitudinal, signal and transverse), complementing the 

acquisition of digital images during the tomato fruit 

ripening process. This information will allow further 

studies related to the physical structure of the fruit related 

to parameters such as volume, surface characteristics, 
color and their changes while ripening. 
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