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 Discretization is a data pre-processing task transforming continuous variables into 

discrete ones in order to apply some data mining algorithms such as association rules 

extraction and classification trees. In this study we empirically compared the 

performances of equal width intervals (EWI), equal frequency intervals (EFI) and K-

means clustering (KMC) methods to discretize 14 continuous variables in a chicken egg 

quality traits dataset. We revealed that these unsupervised discretization methods can 

decrease the training error rates and increase the test accuracies of the classification tree 

models. By comparing the training errors and test accuracies of the model applied with 

C5.0 classification tree algorithm we also found that EWI, EFI and KMC methods 

produced the more or less similar results. Among the rules used for estimating the 

number of intervals, the Rice rule gave the best result with EWI but not with EFI. It was 

also found that Freedman-Diaconis rule with EFI and Doane rule with EFI and EWI 

slightly performed better than the other rules. 
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Tavuk Yumurtası Kalite Özellikleri Veri Setindeki Sürekli Değişkenlerin Yönetimsiz 

Ayrıklaştırılması 
 

M A K A L E  B İ L G İ S İ  Ö Z E T 
 

 

Araştırma makalesi 
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Kabul 14 Mart 2017 

 Ayrıklaştırma, sınıflama ağaçları ve birliktelik kuralları çıkarma gibi bazı veri 

madenciliği algoritmalarında sürekli değişkenleri kesikli değişkenlere dönüştüren bir veri 

önişleme adımıdır. Bu çalışmada eşit genişlikli aralıklar (EWI), eşit frekanslı aralıklar 

(EFI) ve K-ortalamalar kümelemesi (KMC) yöntemleri, bir tavuk yumurtası kalite 

özellikleri veri setinde 14 sürekli değişkenin ayrıklaştırmasındaki performansları 

bakımından deneysel olarak karşılaştırılmıştır. Bu yönetimsiz ayrıklaştırma yönteminin 

sınıflama ağacı modelleri için öğrenme hatalarını düşürdüğü ve doğruluğu yükselttiği 

belirlenmiştir. C5.0 sınıflama ağacı algoritması kullanılarak uygulanan modelin öğrenme 

hatası ve test doğruluğu kullanılarak yapılan karşılaştırmalara göre EWI, EFI ve KMC 

yöntemlerinin birbirine yakın sonuçlar verdikleri görülmüştür. Yöntemlerde aralık 

sayısını hesaplamak için kullanılan kurallar arasında, Rice kuralı EFI’de olmamakla 

birlikte EWI ile en iyi sonucu üretmiştir. Ayrıca EWI ile Freedman-Diaconis kuralının ve 

EFI ve EWI’nin her ikisinde ise Doane kuralının diğer kurallardan kısmen daha iyi 

oldukları saptanmıştır.  
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Introduction 

Discretization is a data pre-processing task 
transforming a continuous variable to a discrete one by 
splitting the range of values into a finite number of 
subranges called intervals, buckets or bins. For example, 
chicken egg weight (gram) as an example of continuous 
variables can be transformed into 4 categories as: (1) 
small: -53, (2) medium: 53-62, (3) large: 63-73, (4) very 
large: 73- . Like the above given example, discretization 
divides a continuous data range into a finite number of 
intervals, and labels them as categories or classes. 
Discretization is frequently required by data mining 
applications because the most algorithms for feature 
selection, classification and association rules extraction 
generally handle discrete variables.  

Although the domain knowledge and experience 
should be consulted for increasing the success in 
discretization, we mostly work with the data-driven 
discretization algorithms or methods because the prior 
knowledge is often unavailable (Muhlenbach and 
Rakotomalala, 2005). According to the surveys by 
Dougherty et al. (1995), Liu et al. (2002), Kotsiantis and 
Kanellopoulos (2006), García et al. (2013) and recently an 
advanced review by Ramírez-Gallego et al. (2015), many 
discretization algorithms have been proposed in the last 
two decades because of the increasing demand by some 
popular data mining applications. In general the 
discretization algorithms are categorized as the supervised 
and the unsupervised algorithms. However the supervised 
algorithms use the prior information about datasets the 
unsupervised algorithms do not use such kind of 
information. Although the choice of a discretization 
algorithm largely depends on the user needs as well as on 
the structure of data to be discretized (Dash et al., 2011), 
the unsupervised methods are commonly in use because 
of their simplicity. 

In animal science, the real data set usually consists of 
the continuous variables that measured in the interval or 
ratio scales. On the other hand, the research works are 
limited for benefitting from data mining applications on 
the datasets gathered in animal production environments. 
In this study, it was aimed to compare the performances 
of three common unsupervised methods in order to use in 
a forthcoming study to be conducted for the association 
rules mining between the chicken egg quality traits.  

 

Materials and Methods 

 
Material 
This study used 4320 eggs obtained from white layer 

hens at the Poultry Research and Application Farm of 
Animal Science Department of the Faculty of Agriculture, 
Cukurova University. 600 layers from 3 successive 
rearing groups were used. One of the groups was white 
native strain Atabey (A) and two of them were 
commercial white layers Decalp (D) and Nick (N). They 
were raised at apartment cage systems at three floors. 
Every genotype group consists of 200 layer hens. There 
were 6 replicates for all genotype groups. Totally 150 
cages were used and 4 layer hens were allocated to each 
cage. At the end of each week the eggs from cages were 
collected and labeled for measuring the quality traits 
listed in Table 1. 

In the analyzed dataset, there was 1 class variable 
(genotype / line) and 14 continuous variables to be 
discretized as shown in Table 2. Before starting to 
discretization, the dataset pre-processed for the missing 
values and outliers, and data size was reduced from 4320 
to 3493 after this preprocessing. The number of instances 
in three classes of the class variable was 1146 for Line A, 
1187 for Line D and 1146 for Line N after deletion of the 
outliers. 

 

Unsupervised Discretization Methods and Rules for 
Interval Numbers Calculation 

Although some more sophisticated unsupervised 
methods such as the novel method using kernel density 
estimation by Biba et al. (2007) have been proposed in 
recent years, equal width intervals, equal frequency 
intervals and clustering are the common unsupervised 
methods in data mining.  

The Equal Width Intervals (EWI) discretization is one 
of the most common and simplest methods in 
discretization of continuous features to discrete ones. EWI 
is based on to split the range (R=max – min) of 
continuous data sorted in ascending order into k equal 
width intervals with k-1 cut-points (c1, c2, …, c(k-1)) as 
seen in Equation 1.  

 

𝑐1 = min + 𝑖 ∙ ℎ,    𝑖 = 1, … , 𝑘 − 1   (1) 
 

As shown in Equation 2, the width of intervals (h) is 
simply computed by dividing the range into the number 
intervals.  

 

ℎ = 𝑅/𝑘      (2) 
 

The problem with EWI is that some intervals may be 
empty or contain more observations than the others if a 
variable has outliers or extreme values. The Equal 
Frequency Intervals (EFI) discretization is an 
unsupervised method overcoming the problem of EWI for 
the outliers. For this purpose, EFI allocates the equal 
number of instances of a sorted variable into k intervals or 
bins. In this way the frequencies of intervals become the 
same with (n/k) equal frequencies. The disadvantage of 
this method is that two or more adjacent intervals may 
contain the values of the same magnitude, and the original 
density function is lost after discretization. 

Clustering is an alternative unsupervised approach to 
discretization of continuous variables. The divisive and 
agglomerative hierarchical clustering methods and K-
means clustering as a partition clustering method can be 
also benefitted in discretization of continuous variables. 
The K-means is one of the most widely used clustering 
methods that partitions the sample instances into k 
clusters in where the within cluster variance is as small as 
possible and between cluster variance is as large as 
possible.  

The above unsupervised discretization methods 
require a right number of intervals parameter (k) as a user-
supplied input. Several rules as listed in Table 1 have 
been proposed to calculate it. However, recommending an 
appropriate k value is not an easy task since a certain 
amount of information may be lost with small k values. 
On the other hand interpreting the results may be very 
difficult with big k values.  
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Table 1 The rules/methods for estimation of number of intervals 

Rules Name of rules Formula for calculation of k Author 

R1 Square root ⌊𝑛1/2⌋ Davies and Goldsmith (1980)  

R2 
Sturge 

Huntsberger 

⌈1 + 𝑙𝑜𝑔2𝑛⌉ ≅  
⌈1 + 3.3 𝑙𝑜𝑔10𝑛⌉ 

Sturges (1926) 

Doran and Hodson (1975) 

R3 Brooks-Carruthers ⌈5 𝑙𝑜𝑔10𝑛⌉ Brooks and Carruthers (1953) 

R4 Cencov ⌈𝑛1/3⌉ Cencov (1962) 

R5 Rice ⌈2 𝑛1/3⌉ Lane et al. (2016) 

R6  Terrell-Scott ⌈(2𝑛)1/3⌉ Terrell and Scott (1985) 

R7 Scott ⌈𝑅 / 3.5 𝜎 ̂𝑛−1/3⌉ Scott (1979) 

R8 Freedman-Diaconis ⌈𝑅 / 𝐼𝑄𝑅 𝑛−1/3⌉ Freedman and Diaconis (1981) 

R9 Doane 

1 +  𝑙𝑜𝑔2𝑛 +  𝑙𝑜𝑔2 (1 +
|𝑔1|

𝜎𝑔1

) ; 

𝜎𝑔1
= (

6(𝑛 − 2)

(𝑛 + 1)(𝑛 + 3)
)

1/2

 

Doane (1976) 

R10 K-means clustering f(K) algorithm defined in Pham et al. (2005) Pham et al. (2005) 

 

Table 2 Descriptive statistics for the continuous variables in the egg quality traits dataset 

Variables Description of variables Mean SD Min Max IQR Skewness 

V1 Egg weight (g) 66.16 4.91 47.68 74.72 6.74 0.26 

V2 Egg width (mm) 43.19 1.22 42.38 46.67 1.59 0.04 

V3 Egg length (mm) 56.93 2.23 50.43 63.52 3.12 0.28 

V4 Egg pH 8.46 0.20 7.89 9.04 0.28 -0.13 

V5 Shell breaking strength 4.68 1.05 1.70 7.65 1.44 -0.07 

V6 Shell thickness (µm) 366.40 22.64 303.33 429.43 31.33 0.02 

V7 Shell weight (g) 6.80 0.64 4.99 8.66 0.90 0.19 

V8 Yolk weight (g) 16.08 1.90 11.03 21.23 2.49 0.01 

V9 Yolk height (mm) 18.36 1.07 15.43 21.26 1.44 -0.16 

V10 Yolk width (mm) 39.92 2.60 32.55 47.41 3.66 -0.11 

V11 Yolk color index (E) 81.77 5.36 66.29 97.42 7.54 -0.22 

V12 White height (mm) 8.64 1.15 5.32 11.78 1.60 -0.12 

V13 White width (mm) 64.85 5.53 50.04 80.18 7.28 0.37 

V14 White length (mm) 85.42 7.03 66.77 104.61 9.75 0.26 

CL Genotype of chicken Class variable has three levels: A, D, N 

 

According to Hyndman (1995) Sturges rule was the 

first rule and most statistical packages use it for selecting 

the number of classes in constructing histograms. Brooks 

and Carruthers (1953) proposed a rule using log10 instead 

of log2 giving always larger k when compared to Sturges 

rule. The rule by Huntsberger (1962) gives nearly equal 

results to Sturges rule. These two rules work well if n is 

less than 200 but problematic with large number of n.  

Scott (1992) argued that Sturges rule leads to generate 

oversmoothed histograms in case of large number of n. In 

his rule Cencov (1962) used the cube root of n simply. 

This rule was followed by its extension such as Rice, and 

Terrell & Scott with the formulas shown in Table 1. 

However the square root of n produces larger k when 

compared to the others, it has been suggested in Davies 

and Goldsmith (1980) because of its simplicity. 

As seen in Table 1 the rules mostly include n only. On 

the other hand, the methods or algorithms using the 

measures about the variation and shape of data 

distributions could provide more optimal k values. For 

instance, Doane (1976) extended the Sturges formula by 

adding standardized skewness in order to overcome the 

problem with non-normal distributions need more bins. 

Scott (1979) used the standard deviation in order to 

estimate optimal k values. Freedman and Diaconis (1981) 

proposed to use the interquartile range (IQR) statistic 

which is less sensitive to outliers than the standard 

deviation. 

 

Computational Tools and Data Analysis 

The variables in the dataset were discretized by using 

the discretize function of the arules library (Hashler et al., 

2016) in the R statistical computing environment (R Core 

Team, 2016). In order to determine the interval numbers 

via clustering we used the kselection package (Rodriguez, 

2016). In order to evaluate the discretization 

performances of the methods, we compared the 

classification training error rates and test accuracies 

calculated with the C5.0 Decision Tree Algorithm. The 

C5.0 function of C50 library was run on each discretized 

dataset obtained with the discretization processes. We 

built the classification tree model by using all the 

variables (V1 to V14 in Table 1) as the predictors (X) and 

the genotype of chickens (CL) as the class variable (Y), 

and ran the model with 10 iterations with boosting option. 

We randomly sampled 80% of the data points (n=2750) as 

the training dataset (trainY and trainX) and the remaining 

20% (n=743) as the test dataset (testY and testX). The 

applied model was C5.0 (trainY ~., data = trainX, trials = 

10).  
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Results and Discussion 

 

As seen in Table 3, the first 6 rules produced the same 

results for all the variables in the dataset because they do 

not take into account the variable specific statistics for 

calculating k. The highest k was obtained as 59 from the 

square root rule (R1) while the smallest was 13 from 

Sturges rule and its counterpart Huntsberger rule (R2). 

Among the cube root based rules, Cencov rule (R4) and 

Terrell and Scott rule (R6) gave k value as 18 and 20 

respectively while Rice rule (R5) produced a bigger k 

value of 30.  

Scott rule (R7) using the standard deviation for each 

variable resulted with the k values between 24 and 26, and 

it was mostly equal to 25. Freedman-Diaconis rule (R8) 

gave the k as 31 for the majority of variables, and changed 

between 29 and 33. The results from this rule were nearly 

equal to the results from Rice rule (R5). The results of 

Doane rule (R9) changed between 13 and 16, and were 

closer to the results from R2 and R6.  The k obtained with 

K-means clustering (R10) was the smallest for the 

variable yolk width, and highest for the variable yolk 

color index. 

The training error rate of the classification tree model 

computed on the original dataset containing the 

continuous values of the variables was found 5.0%. For 

all the discretized datasets, the training error rates of the 

model varied between 0.0% and 0.8%. They were smaller 

than those obtained on the original dataset. This finding 

revealed that the model worked better on the discretized 

datasets. According to paired t-test analysis,  there was no 

significant difference between the error rates obtained 

from EWI and EFI discretized data sets for all the rules 

(t=1.8932, P>0.05). 

 

Table 3 Number of intervals (k) by the rules 

Rules 
Variables 

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 

R1 59 59 59 59 59 59 59 59 59 59 59 59 59 59 

R2 13 13 13 13 13 13 13 13 13 13 13 13 13 13 

R3 18 18 18 18 18 18 18 18 18 18 18 18 18 18 

R4 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

R5 30 30 30 30 30 30 30 30 30 30 30 30 30 30 

R6 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

R7 24 25 26 25 26 25 25 25 24 24 25 25 24 24 

R8 30 33 32 31 31 31 31 31 31 31 31 31 31 29 

R9 16 14 16 15 15 14 13 15 13 15 15 15 16 16 

R10 32 32 32 20 26 33 29 37 37 23 38 36 34 34 

 

 

Table 4 Model training errors and test accuracies by the discretization methods 

Datasets Training Error (%) Test Accuracy (%) 

Continuous 5.0 53.24 

Equal Width Intervals (EWI) 

EWI-R1 0.2 51.32 

EWI-R2 0.1 51.44 

EWI-R3 0.1 49.34 

EWI-R4 0.1 51.54 

EWI-R5 0.0 54.43 

EWI-R6 0.1 52.10 

EWI-R7 0.3 51.55 

EWI-R8 0.1 52.32 

EWI-R9 0.8 53.10 

EWI-R10 0.3 50.55 

Equal Frequency Intervals (EFI) 

EFI-R1 0.0 51.88 

EFI-R2 0.1 52.32 

EFI-R3 0.0 52.10 

EFI-R4 0.0 52.21 

EFI-R5 0.3 52.21 

EFI-R6 0.0 50.33 

EFI-R7 0.1 52.88 

EFI-R8 0.0 53.20 

EFI-R9 0.1 53.20 

EFI-R10 0.0 50.33 

K-Means Clustering (KMC) 

KMC 0.2 52.54 
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The test accuracy of the classification model 

computed from the original undiscretized dataset was 

found as 53.24%. As seen from Table 4, the test 

accuracies of the model changed between 49.34% and 

54.43%, and were nearly equal for all the discretization 

methods. The highest accuracy was computed as 54.43% 

from the equal width intervals method using k value of 

Rice rule (EWI-R5). This was followed by EFI with 

Freedman-Diaconis rule (EFI-R8) and Doane rule (EFI-

R9), and EWI with Doane rule (EWI-R9) again with the 

test accuracies of 53.20%, 53.20% and 53.10% 

respectively. The smallest accuracy was found as 49.24% 

from EWI with Brooks & Carruthers rule (EWI-R3). The 

remaining rules with EFI and EWI, and K-means 

clustering performed more or less similar. According to 

the pairwise t-test there was no significant difference 

between EWI and EFI methods (t = -0.6475; P> 0.05). 

 

Conclusions 

 

In this study we empirically compared the 

performances of EWI, EFI and K-means clustering 

methods to discretize the 14 continuous features in a 

chicken egg quality traits dataset. We revealed that 

discretization can slightly decrease the training error rates 

and increase the accuracies of classification tree models. 

By comparing the training errors and test accuracies of 

the model applied with C5.0 classification tree algorithm 

we also found that there were no significant differences 

between the EWI, EFI and K-means clustering methods. 

According to the findings Rice rule gave the best result 

with EWI but not with EFI. Following this Freedman-

Diaconis rule with EFI and Doane rule with EFI and EWI 

slightly performed better than the other rules. 

According to the results obtained in this study, we 

propose to use any of unsupervised methods with 

Freedman-Diaconis rule and Doane rule in discretization 

of the continuous variables in the chicken egg quality 

traits datasets. We nevertheless need to make these 

findings more conclusive by using the more sophisticated 

unsupervised methods on the other datasets. The 

supervised methods were reported to be better than the 

unsupervised ones in some literature (Dougherty et al., 

1995) while the contradicting results were obtained by 

some others (Cantú-Paz, 2001). Therefore we need further 

empirical comparisons of the unsupervised methods 

versus some of the common supervised methods. 

However, the unsupervised methods will still remain as 

the only discretization option when we do not have prior 

known class labels required by the supervised methods. 
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